
Combining Design Thinking and Software
Requirements Engineering to create
Human-centered Software-intensive Systems

Jennifer Hehn1, Daniel Mendez2, 3

1 Institute of Technology Management, Berne University of Applied Sciences

2 Blekinge Institute of Technology, Sweden

3 fortiss GmbH, Germany

Abstract Effective Requirements Engineering is a crucial activity in software-
intensive development projects. The human-centric working mode of Design
Thinking is considered a powerful way to complement such activities when
designing innovative systems. Research has already made great strides to illustrate
the benefits of using Design Thinking for Requirements Engineering. However, it
has remained mostly unclear how to actually realize a combination of both. In this
chapter, we contribute an artifact-based model that integrates Design Thinking and
Requirements Engineering for innovative software-intensive systems. Drawing
from our research and project experiences, we suggest three strategies for tailoring
and integrating Design Thinking and Requirements Engineering with
complementary synergies.

1. Introduction

The success of any software-intensive system anchors in the question how well it
reflects its users’ needs (Maguire and Bevan 2002) and surrounding constraints.
“Getting the requirements right” – which is often associated with term Requirements
Engineering – is consequently seen as one of the most significant endeavours in
development projects (Broy 2006; Robertson and Robertson 2013). It is typically
associated with initial phases of a software development life cycle and its major aim
is to decide upon the relevant functional and non-functional properties of software-
intensive products. Elementary tasks towards this goal include the elicitation of
requirements, their analysis and negotiation also in terms of reaching consensus
among all relevant stakeholders, their specification to accommodate subsequent
engineering activities, and their validation in terms of ensuring the requirements’
quality (e.g. correctness and consistency, among other attributes).

2

In accordance with the terminology introduced by the International Requirements
Engineering Board1, Requirements Engineering, therefore, denotes the “systematic
and disciplined approach to the specification and management of requirements with
the goal of understanding stakeholders’ desires and needs and minimising the risk
of delivering a system that does not meet these desires and needs”. Given the
human-centric nature of software – in the end, software is made by humans for
humans – Requirements Engineering is undoubtedly a critical determinant for
software quality, regardless of how Requirements Engineering exactly manifests
itself in practical settings2. In a world pervaded by software and where most of our
daily routines are supported – if not dominated – by software-intensive systems,
excellence in RE is a de-facto key. At the same time, many companies struggle
with capturing the users’ needs effectively, often leading to software-intensive
systems which (1) either miss important requirements, (2) reflect incorrect
requirements (or incorrect assumptions), or (3) which reflect - technically speaking
- the correct functionality, but are still rendered unusable as they lack important
non-functional properties from the perspective of their end users. This gives rise to
the need for new approaches that allow for a more human-centred Requirements
Engineering.

In the following, we first elaborate on difficulties and limitations of contemporary
Requirements Engineering principles and approaches, before motivating their
symbiotic relationship with Design Thinking to create software-intensive systems
in such human-centred way. Exploring the relationship of both historically grown
worlds as part of an integrated approach is in scope of this book chapter.

1.1 Requirements Engineering and its limitations

Many companies struggle in the complex endeavour of establishing a high-quality
Requirements Engineering and, in consequence, many projects suffer from
insufficient Requirements Engineering. One of the key characteristics of
Requirements Engineering is its volatile nature and its sensitivity to its practical
context. Many things are not clear at the beginning of a project and a methodology,
method, or tool that might fit very well the needs of one project could be completely
alien to the needs and the culture of the next. This is what renders Requirements
Engineering as something hardly standardisable with universal one-size-fits-all

1 See the IREB glossary, available at www.ireb.org
2 We can often observe that RE is subsumed under the umbrella of software

process models or product management approaches, often without using the term
“Requirements Engineering”. In this chapter, we do not distinguish between those
various approaches but refer to the handling of requirements – from their inception
to their specification and validation – which is in scope of any product development
regardless of the chosen approach and terminology and regardless of whether it is
done explicitly or implicitly.

3

solutions and, thus, a discipline difficult to master. It is therefore not surprising that
33% of software development errors are estimated to have their origin in insufficient
RE (Emam and Koru 2008; Méndez Fernández and Wagner 2014). Moreover, 36%
of those errors are known to lead to project failures. Requirements Engineering is
therefore not only difficult to handle, but it is also crucial for project success.
Further studies corroborate the criticality of Requirements Engineering as they
show how requirements errors may represent 40% of the total project costs; it is
commonly accepted that when these errors are found late in the development
process, their correction can make up to 200 times more than when correcting them
during in early development stages (Venkatesh Sharma and Kumar 2013).

Figure 1 Top 21 Requirements Engineering problems as revealed by the

"Naming the Pain in Requirements Engineering" initiative. See also
www.napire.org for more information including publications and open data sets.

We initiated, at the time of writing this chapter already a decade ago, a globally
distributed, bi-yearly replicated family of surveys to gain insights into
contemporary practices and challenges in Requirements Engineering: The Naming
the Pain in RE initiative (short: NaPIRE, see also Wagner et al. 2019, Méndez
Fernández et al. 2016)3. Among the insights we gained are a clearer understanding

3 See also the project website NaPiRE.org for further information and related

empirical data sets.

4

about the most frequently occurring and most critical problems companies
experience, as well as their root causes and their effects (going beyond a binary
view on project failure and success). Here, we discovered that a large share of
problems is related to human factors and the lack of expertise to deeply penetrate
the problem space – and this is regardless of the software process model employed
such as “agile” (Méndez Fernández et al. 2015).

This is not surprising given that Requirements Engineering is historically grown out
of engineering disciplines and corresponding worldviews and it involves many
different approaches, methods, tools, and techniques – none of which is suited for
all purposes. In any case, while most of primarily academic debates are centred
around questions related to the specification and refinement of requirements to
measurable and, in particular, verifiable requirements covering various forms of
representation (for models and natural language descriptions) as well as questions
related to facilitating seamless modelling and the transition to the solution space in
engineering, little attention is paid to eliciting the actually relevant requirements to
obtain a sufficiently complete and correct requirements specification.

In fact, one of the biggest lies we tend to tell ourselves in Requirements Engineering
is that the information relevant to understand the problem space (stakeholder
information, context information, requirements) is omnipresent and simply needs to
be elicited. A typical consequence of this problem is what we call “solution
orientation” (Mendez Fernandez et al. 2012), the tendency of moving too fast to
developing a solution and of focussing on related technical aspects often without a
proper understanding on the problem to be solved by that solution. Here, actual user
needs are often neglected, requirements are invented based on incorrect
assumptions or blindly reused from other supposedly similar projects and solely
based on the requirements engineer’s intuition, or they lack creativity (see Inayat et
al. 2015 as well as the results of the NaPiRE initiative). This underlines the need for
more problem-oriented ways of thinking.

In fact, today’s complexity growth in product development where system and
domain boundaries become more and more fuzzy and where human factors become
more and more important makes explicit the need for a shift even in RE itself (and
corresponding roles and responsibilities) from often technology-centric ways of
thinking, tasks, and domain-expertise to problem-centric ways of thinking,
mediation, empathy, and creativity. This gives raise to the need for new approaches
in interdisciplinary team configurations. This is what is promised by Design
Thinking. But how does Design Thinking delineate exactly from Requirements
Engineering?

5

1.2 Design Thinking and Requirements Engineering: Two distinct, yet
complementary Approaches

With its growing relevance in agile software development, Design Thinking has
gained recognition as a creative problem-solving method, particularly when the
real-world problem is complex or “wicked” (Buchanan 1992). Industry studies have
highlighted this significant development. For example, based on a survey of the
Hasso-Plattner Institute (Schmiedgen et al. 2015), over 69% of Design Thinking
practitioners and managers identified Design Thinking as one of the major
contributors to conduct an efficient innovation process. In a survey of IBM by
Forrester (2018), Design Thinking was reported to reduce development and testing
time by 33%, equating cost savings of around $1.1 Mio per major software
development project. Some researchers even consider Design Thinking a “modern
form of requirements engineering” (Beyhl and Giese 2016, p. 288) addressing some
of the aforementioned challenges in current Requirements Engineering practices.
However, we argue that this is not the case. Design Thinking and Requirements
Engineering emerge from different backgrounds and offer different tools and
approaches aiming at different goals, even though these goals are complementary
by nature, as explained next.

In principle and as elaborated in more detail in the next sections, when developing
a software-intensive product, we need to accommodate essentially two perspectives.
On the one hand, we need a profound understanding of the socio-technical and the
operational context of the system under consideration. It is important to elaborate
what problems, needs, and goals stakeholders really have, and what the
particularities of the domains including limiting (e.g., regulatory) constraints and
demands are. This constitutes the difficult task of gaining a profound understanding
of the too often fuzzy goals, rather than requirements or solution proposals, what
their implications are, and what possibilities these goals open for future products.
On the other hand, we need to elaborate a solid foundation for the engineering of a
software product where we clearly specify – as far as possible in a non-technical,
solution-independent fashion – what the elementary functional and non-functional
properties of the software product are. Those properties build the basis for a variety
of engineering and management activities ranging from architectural design over
implementation and verification to project organisation and planning activities such
as effort and cost estimations.

The first perspective is what is typically in scope of Design Thinking which
describes a specific mindset and often non-technical approaches to penetrate the
problem space from a user perspective and to deliver non-technical throw-away
prototypes that allow to better understand that problem early on. The second
perspective is what is typically in scope of Requirements Engineering which
describes (engineering) methodologies, approaches, and tools to specify
requirements in a detailed and testable way that facilitates subsequent development
and management activities in a seamless manner. Here, capturing the problem

6

domains and user perspectives is in many ways important (think for example in
terms of UX), but not always central. A central task in Requirements Engineering
is often to focus on operational environments and underlying infrastructures as well
as their technical constraints, implications, and cost structures, but also on evidently
demonstrating compliance to regulatory standards existing for many industries
(think for example in terms of safety-critical systems or cyber-physical systems). In
that sense, Requirements Engineering comes in many forms and interpretations
which are all different to the principal ways of working in Design Thinking and yet
they are all complementary to each other.

Design Thinking leverages interdisciplinary teamwork for a structured approach of
ethnographic methods, and fast and simple (non-technical) prototyping cycles to
produce innovative solutions in early product, service, and system development
processes (Brown 2008; Kolko 2015). This rather diverging nature of problem-
solving is notably different from the more converging ways of Requirements
Engineering practices in most software-intensive projects (Harte et al. 2017). The
multi-facetted opportunities of applying Design Thinking for Requirements
Engineering are highlighted by several research community members. Vetterli et al.
(2013) were ones of the first who suggested bringing Design Thinking and
Requirements Engineering together for developing software applications.
Academics with a content-focused view (what value does Design Thinking add)
have recognized its value in terms of product quality, user acceptance, and process
speed, mostly in specific domains like learning environments (Soledade et al. 2013),
social innovation (Newman et al. 2015), or health care (Harte et al. 2017).
Academics with a more process-focused view (how does Design Thinking add
value), examine usage schemes of Design Thinking with software engineering
techniques and agile development toolkits. For instance, authors have investigated
the integration of Design Thinking and Scrum (e.g., Häger et al. 2015; Przybilla et
al. 2018) and found evidence for higher innovation potential stemming from a
combination of both approaches. Although mainly practice-oriented literature
suggests potential benefits of combining Design Thinking and Requirements
Engineering, or more generally speaking Software Engineering, knowledge on how
this could be done in a seamless manner remains still unclear (Beyhl and Giese
2016).
While Requirements Engineering is a rather mature discipline with a long-standing
history in research and practice, resulting in a plethora of holistic methodologies,
practices, and tools, there is still limited knowledge about Design Thinking as Yoo
(2017, p.v) emphasizes in his call to “advance the intellectual foundation of Design
Thinking” for IS research. Little is known, in fact, about the specific impact on
Requirements Engineering. A deeper understanding of Design Thinking would
enable both communities, Requirements Engineering and Design Thinking, to
evaluate its application purpose and potential for discovering and specifying
requirements more thoroughly.

This is what is in scope of this chapter in the hope to provide a solid foundation for
the remainder of this book.

7

1.3 Contribution and Outline

In this chapter, we elaborate on an effective integration of Design Thinking into
Requirements Engineering. Note that we do not pretend that there would be one
exclusive way of doing Design Thinking or Requirements Engineering. Rather, our
aim is to introduce the mindset and common practices of both worlds, abstract from
those practices by means of concentrating on the underlying outcomes (artifacts),
and finally to use those resulting more simplified models for an integration of
Design Thinking and Requirements Engineering which we further complement with
practical experiences and recommendations. This provides a common basis for the
various invited expert discussions captured in this book.

In the remainder of this chapter, we focus on the following contributions:

● First, we introduce the very fundamentals of Design Thinking and
Requirements Engineering including the principles and practices as often
found in literature.

● We then elaborate a first artifact model for Design Thinking that captures
the essential concepts, approaches, and terms, and we will do the same
for Requirements Engineering. We particularly concentrate on an
artifact-centric view as a process-agnostic means that allows us to
concentrate on the essential work products and their dependencies while
abstracting from the particularities of surrounding, often very complex
and unique specific-purpose processes.

● We use the artifact models for Design Thinking and Requirements
Engineering to propose an integration of both.

● To use that integration not only as a conceptual foundation but also allow
for its effective use in practice, conclude by introducing different
operationalisation strategies on how to make efficient use of the
introduced combination of Design Thinking and Requirements
Engineering to create human-centred software-intensive systems.

Rather than merely focusing on presenting an academically oriented concept model,
we aim at elaborating on essential terms, principles, and concepts while considering
(and extending) the perspective on the practical relevance as many results emerge
from academia-industry collaborations.

One central hope we associate with this introductory chapter is therefore to set the
foundation for the subsequent invited chapters and to contribute to the ongoing
debates and efforts in effectively integrating both worlds.

8

1.4 Previously Published Material

Note that the insights provided in this book chapter emerge from previously
published material, among it the dissertation of the first author (Hehn 2020) as well
as the long-term collaboration with the second author. In some parts, we will
explicitly borrow from parts of the dissertation in a verbatim manner.

2. Conceptual Background

In the following, we introduce the background to the extent necessary for the
contributions of this book chapter. We will first elaborate on the very fundamentals
of Design Thinking before concluding with a brief introduction of Requirements
Engineering.

2.1 Design Thinking as a human-centred problem-solving
approach

Design Thinking is referred to as “a human-centered approach to innovation that
draws from the designer's toolkit to integrate the needs of people, the possibilities
of technology, and the requirements for business success.” (Brown 2012) The roots
of Design Thinking date back to the late 1960s, when design academics examined
the mental processes that underlie design activities and transformed them into
normative guidelines for creative problem solving (Simon 1969). These studies
have expanded the scope of design beyond the boundaries of product styling to a
way of thinking that can now be universalized for a multitude of disciplines (e.g.,
management, business, software development, engineering).

The paradigm of human-centred design is both starting point and foundation of all
activities at all stages in Design Thinking (Brown 2008). Design Thinking solutions
evolve from the triad of human values (desirability), technological feasibility, and
business viability, combining expertise from the field of design, ethnologic and
anthropologic research, engineering, and business economics. The dimension of
desirability (what people want and need) anchors in a deep empathy for users and
is applied by involving relevant stakeholders systematically throughout the entire
process. Diverse design techniques help facilitating the creative transformation of
user knowledge and insights into new concepts. Subsequently, feasibility and
viability are integrated and explored. The lens of feasibility (how technology can
help), therefore, demands an exploration of organizational capabilities and
technological options in order to translate the human-centred requirement into
actual products and services. Assessing the third dimension of business viability
(what is financially sustainable) entails evaluating market opportunities and their

9

compliance with the business objectives of the organization. Given its integrative
nature, Design Thinking can be applied to “all aspects of business and society”
(Brown 2009, p. 3) and is equally relevant for designing tangible and intangible
solutions, both in public and private sectors.

2.2 Design Thinking on an operational level

On an operational level, Design Thinking is interpreted in three ways: as (1) a
process with a sequence of steps according to a prescriptive process framework, (2)
a toolbox with a collection of methods for situational support, and (3) a mindset
with a set of human-centered principles to be internalized (see Figure 1). While all
three modes are interlinked, they result in different conceptualisations on a practical
level. As Fraser (2011) suggests, “it takes a combination of the right mindset (being)
and a rigorous methodology (doing) that unlocks a person’s thinking, and that one
must consider all three of these factors.” (p. 71)

Figure 2 Design Thinking as Process, Toolbox, and Mindset (see also Hehn

2020)

2.2.1 Design Thinking Process

Design Thinking process models, accompanied by a set of design tools, provide a
supportive framework for practical use. Because of their specific character and clear
instructions, those models are often utilised in Design Thinking education to
provide a tangible, formalized approach to the Design Thinking concept. The
normative Design Thinking process model is typically divided into two main
phases: (1) problem exploration with problem definition, needfinding, and synthesis
and (2) solution exploration with ideation, prototyping, and testing (ME 310 2010).

10

The Design Thinking process as introduced in the left column in Figure 2 can be
summarised in five iterative steps as illustrated in the following:

1. (Re-)Define: The starting point of Design Thinking process implies an
intensive level of engagement with the topic under consideration. The
complex problem is transformed into a single sentence (often starting with
“How might we...?” or “What if…?”) entailing a clear design challenge
and, therefore, making the topic somewhat tangible. Activities in this stage
are to identify sources of inspiration, assess relevant stakeholders and their
impact on the problem, explore emerging trends and market adjacencies,
and to prepare research directions.

2. Needfinding & Synthesis: In the second step the topic is concretized by
collecting user data through field research. The design thinking team
applies empathic research techniques to uncover hidden needs and
unexpressed desires by finding out how people work, what they like and
dislike, and how they interact with a product or service. Practical activities
in the observation phase include interviews (e.g., with users, extreme-
users, non-users, and experts) and a variety of observation methods (e.g.,
self-documentation, on-site observation, shadowing). The acquired
needfinding data is then transformed into meaningful insights about
(unmet) user needs. Problem framing and reframing helps to identify
patterns and ultimately develop a focus on where to create the highest
value and impact for them. Applied tools are storytelling, scenarios,
empathy maps, journey maps, and personas.

3. Ideation: Based on the developed insights in step 2, structured creativity
methods support idea generation for new solutions. Ideation focuses on
creating ideas and concepts (for instance by brainstorming techniques) as
well as sketching them out quickly. Brainstorming rules such as “be
visual”, “encourage wild ideas”, “defer judgment”, “go for quantity”, “stay
focused on topic”, and “build on the ideas of others” are applied to
stimulate creativity and thinking outside the box.

4. Prototyping: Solution ideas that seem promising are turned into tangible
prototypes (e.g. (paper-) models, mock-ups, role-plays, storyboards,
journey mapping, short videos) in order to facilitate communication and
feedback from end users. Therefore, it is not necessary to build perfectly
well-engineered products, but rather simple versions and multiple
alternatives in parallel, which focus on the most important aspects or
highlight features for which feedback is crucial. Over the course of a
project, prototypes usually evolve from so called ‘Critical
function/experience prototypes’ (that define the core functionalities of the
solution), and ‘dark horse prototypes’ (that challenge key assumptions and
boundaries with visionary ideas) to ‘system prototypes (that combine the
most promising elements into one system vision (Uebernickel et al. 2015).

5. Testing: The ultimate step is the collection of user feedback and definition
of improvement opportunities. Since it is important to understand the
physical interaction of the product in use, feedback from end-users and

11

project stakeholders is processed for further concept enrichment and
revision. Considering the new information, the Design Thinking team may
then go back to earlier steps, often revising the point of view stage or even
starting the entire process over again by doing additional research about a
specific idea and its realization.

Another way of visualizing the innovation workflow is dividing the Design
Thinking process into two exploration stages: (1) the exploration of the problem
space and (2) the exploration of the solution space, both consisting of an interaction
between information gathering (divergent activities) and information processing
(convergent activities). This visualization is also called “Double Diamond” (see
Figure 3).

Figure 3 Double Diamond (see also Hehn et al. 2020, p. 26)

The problem space demands diligent examination of the problem context by
integrating all relevant stakeholders and the synthesis of all collected information
to a clearly defined point of view, including needs and insights. The solution space
encourages the generation of ideas and the creation of prototypes, which can be
evaluated and tested with users. The process is repeated several times until a final
solution can be presented. Reflection points are carried out during the process
wherever necessary as they are crucial steps for adapting to novel information and
developing deeper insights. Each cycle stimulates creativity and encourages rapid
learning through trial-and-error.

2.2.2 Design Thinking Toolbox

Design Thinking as a toolbox breaks Design Thinking down into a set of techniques
from which to pick and choose those that work best for the particular context and
situation (see middle column in Figure 2). A wide range of practitioner catalogues
of Design Thinking methods and tools have emerged in recent years (Doorley et al.

12

2018; IDEO.org 2015; Uebernickel et al. 2015). In this case, Design Thinking is not
so much considered a prescriptive process or a distinct phase of a process, but rather
a bundle of handy and selective (design) methods and techniques for situational
support. Examples of the most used methods that are attributed to Design Thinking
are summarized in the following table (Hehn et. al 2018).

Table 1 Examples of Design Thinking Methods (adapted from Hehn et al. 2018)

Method Description Phase

Stakeholder
Mapping

Analysis of all stakeholders that are affected by the
design challenge

Define

Desk Research Desk research is known for collecting data based on
literature and internet research

Define

Framing &
Reframing

Framing and reframing is used to define the scope
(and out of scope) of a project

Define

Interviewing Conversation between two or more people where
questions are asked by the interviewer

Needfinding

Observation Observation and descriptions of happenings in the real
world

Needfinding

Active Listening Technique to elicit needs by understanding and
responding to what someone has said

Needfinding

Clustering Technique to bundle ideas and statements into
thematic buckets

Synthesis

Storytelling Method for exchanging knowledge collected during
needfinding

Synthesis

Insight
Formulation

Processes to distill and capture the most important
learnings from needfinding

Synthesis

"How might we"
Questions

"How might we …" is a way of asking questions to
initiate Brainstorming but also entire projects

Ideation

Brainstorming Brainstorming is a group creativity technique, mostly
based on Osborn’s method

Ideation

Brainwriting Similar technique to Brainstorming but all ideas are
collected in written format before the information
exchange within the group starts

Ideation

Paper Prototype Tangible representation of a product or service to
facilitate testing

Prototyping

Role Playing Role playing is used to act out service scenarios
quickly and simply

Prototyping

Sketches /
Scribbles

Sketching and Scribbling is all about drawing ideas
and making them more tangible.

Prototyping

13

Feedback Capture
Grid

Framework to capture user, customer, or stakeholder
feedback while testing (dimensions often are: Likes,
Criticism, Ideas, Questions)

Testing

Contrary to the process-perspective, the toolbox offers an even more flexible way
of using Design Thinking and tailoring it to specific project conditions. Thus, it can
be integrated into the daily work routine and into existing company structures
relatively quickly. However, since many of the Design Thinking techniques are not
necessarily exclusive to this approach, it may raise the question from which point
onwards to actually speak of Design Thinking.

2.2.3 Design Thinking Mindset

A growing number of authors stress that the core of Design Thinking goes beyond
process models and tools (e.g., Kröper et al. 2010; Martin 2009). They perceive
Design Thinking primarily as a mindset or general “design attitude” (Boland &
Collopy 2004, p. 3) towards creative problem-solving (see right column in Figure
2). This entails the development of empathy, an open-minded and optimistic
approach to generating insights and ideas, and the rationality to investigate and fit
those ideas in compliance with the context. The main principles are highlighted in
the following:

● Design Thinking emphasizes human values as a starting point and
foundation for all related activities (Brown 2008). Understanding what
people need and want anchors in a deep empathy for users and is
achieved by systematically integrating a variety of stakeholder groups
throughout the development process, both through direct dialog and non-
obtrusive observation methods.

● Design Thinking solutions are mainly generated through radical
collaboration, both with users and by composing a multidisciplinary
project team that incorporates different functions and departments
(Doorley et al. 2018). By encouraging inter-organizational cooperation
on the ground of common principles for a collaborative culture, Design
Thinking can be regarded as a holistic framework for co-creation.

● Design Thinking leverages abductive reasoning to constantly generate
new information and consider alternative options early on. The abductive
nature of this way of working induces a “reflective conversation with the
situation” (Schön 1984, p. 76) by looking beyond “what is” and
exploring the logic of “what might be” to generate customer and business
value (Martin 2009).

● Design Thinking stresses a bias toward action. This means that the
preferred ways for gathering insights and feedback from stakeholders are

14

hands-on activities such as experimenting with ideas, building
prototypes, and testing them (Doorley et al. 2018).

● Design Thinking is a fundamentally exploratory process that encourages
rapid and iterative learning cycles. According to the “fail early and
often”-principle every iteration leads to further adjustments and new
directions in the development process. In the long run, this iterative
approach to development is supposed to mitigate risks of not meeting
customer needs in the long run (Brown 2009).

2.2 Artifact-based Requirements Engineering and the AMDiRE
Approach

Similar as it is the case for Design Thinking, Requirements Engineering, too, comes
in various forms and interpretations while none is best for all purposes. In this
chapter, we will not even try to introduce the discipline in its various interpretations
to the extent they deserve, same as it is not our intention to promote any of the
various (and often competing) approaches to Requirements Engineering. Rather, we
aim at laying the foundation for an Requirements Engineering that integrates the
very Design Thinking tools and principles introduced above.

In principle, how Requirements Engineering is done in practice – including the
artifacts created and the techniques used – depends on many factors such as
surrounding software process models, application domains, industry sectors, and
even engineering cultures including personal, subjective preferences in engineering
terms. Those characteristics render Requirements Engineering approaches as
something unique and barely standardizable with a one-size-fits-all solution. In
response to this complexity in the choice of methods and approaches various
artifact-based approaches to Requirements Engineering have been elaborated over
the last two decades. All those approaches capture the particularities of the
envisioned domains and serve as reference models to guide the elaboration of
precise requirements for those domains while offering the necessary flexibility in
how to do it from the perspective of processes and activities. To this end, there are
several blueprints of the results and their dependencies rather than a dictate for
complex activities, tasks, or methods. This is what essentially reflects the artifact-
centric philosophy. In such a philosophy, we concentrate on defining the artifacts,
their contents, and their dependencies in a central model that constitutes the
backbone of a (Requirements Engineering) project, and which leaves open when to
create which artifact and which description technique to use (Méndez Fernández et
al. 2019). Such a model then serves as a guidance for engineers in elaborating their
results (e.g., the specification of user requirements via use cases and capturing their
relationship to acceptance test cases to support traceability) while leaving open how
they intend to do it (e.g., in an agile manner or a rather plan-driven manner).

15

In this book chapter, we rely on one specific artifact-based approach to
Requirements Engineering which we use as integration point for Design Thinking.
The approach we rely on is the Artifact Model for Domain-independent
Requirements Engineering (short: AMDiRE). AMDiRE emerges as a concluding
synthesis of the various approaches developed in recent years for different domains
and industry sectors and which all have been disseminated into everyday practice,
e.g., at Capgemini, Siemens, Bosch, BMW, or Cassidian. The AMDiRE approach
thus emerged as the result of consolidating previously developed approaches and
the lessons we learnt during their development, evaluation, and dissemination.

Here, we focus on the very foundation of AMDiRE to the extent necessary in the
context of our chapter. Details on the approach can be taken from previously
published material (Méndez Fernández and Penzenstadler 2014).

2.2.1 Overview of AMDiRE Components

Figure 4 illustrates all components included in the AMDiRE approach necessary to
use it as reference at project level. The central component of AMDiRE is defined
by its artifact model. For the sake of simplicity, we see an artifact as a key
deliverable of major interest that abstracts from contents of a specification
document. It can be used as input, output, or even as an intermediate result in
Requirements Engineering created along a particular task or method and by
choosing a description technique (e.g., natural language, structured tables, figures,
or models) as long as it complies with the artifact model as explained next. A more
insightful introduction into what artifacts are in software engineering can be taken
from our reflection provided in previous work (Mendez Fernandez et al. 2019).

For each artifact, we capture two essential views: a structure view and a content
view. The structure view captures for each artifact type (e.g., “requirements
specification”) the content items to be considered (e.g., “use case model”). For each
content item, we define the content view via the modelling concepts, e.g., the
elements and content relations of a use case model and different description
techniques that can be used to instantiate these concepts, such as an UML activity
diagram. The structure model thus gives a simplified view on the content and is used
to couple the contents to the elements necessary to define a process, e.g., roles,
methods, and milestones relevant for a use case model. This is in scope of the
integration of AMDiRE into company- and project-specific software process
models (often referred to as static tailoring). The content model then guides by
defining what is necessary to specify the content, e.g., scenarios, actions and actors,
which we use to create a use case model.

16

Figure 4 Overview of AMDiRE Components (see also Méndez Fernández and

Penzenstadler 2014)

Note that we consider – same as for activity-centric approaches to Requirements
Engineering – elements of a process description, but instead of defining the process
based on phases, activities, and methods, we define the process based on the artifacts
to be created and their relationships, as well as related milestones for when these
artifacts should be of sufficient quality to specify the next. Even though the content
model supports the precision of the results in the flexible process definition, the
process itself remains undefined. Regarding the methods and description techniques
for creating the contents (e.g., UML or natural text), we leave open which one to
choose, as long as the contents and relationships proposed by the artifact model are
specified.

2.2.2 AMDiRE Artifact Model

The AMDiRE artifact model comprehends concepts used to specify the contents of
the artifacts over three levels of abstraction: the Context Layer, the Requirements
Layer, and the System Layer. Each of those levels of abstraction features a specified
number of content items that are detailed in concepts used for a stepwise refinement
of the various (modelling) views we have on a system. The context layer considers
the context of a system, i.e. the domain in which to integrate the system such as the
business domain with the business processes to be carried out. The requirements
layer considers the system from a black-box perspective. That means, we specify
the requirements on the system and the user-visible functionality from a perspective
in which the system is intended to be used, without giving details about its technical,

17

internal realization. That view is captured by the system layer which provides the
glass-box perspective on the internal (logical and technical) realisation of the
system.
The artifact model is in the center of our attention and consists of two basic models:
the content model and the structure model. The content model abstracts from the
modelling concepts used for a particular family of systems in a particular
application domain over the defined levels of abstraction. The structure model gives
a logical structuring to those concepts and is used for the integration with the role
model and the process model (see also the previous section).
Finally, details on the single content items as well as further components which
accompany AMDiRE will be introduced in context of the integration of our Design
Thinking model into AMDiRE (while also referring the interested reader to the main
article Méndez Fernández and Penzenstadler 2014).

18

Figure 5 AMDiRE Artifact Model (simplified view on structure model, see

also Méndez Fernández and Penzenstadler 2014)

19

3 An Artifact Model for Design Thinking

In contrast to Requirements Engineering, no artifact model exists for Design
Thinking – until now. We have taken the multitude of practitioners’ compendia that
present and summarize Design Thinking-specific methods as a basis to logically
infer the results they produce (i.e., artifacts) (Gutzwiller 1994). Hence, we can rely
on the available literature corpus as well as the knowledge we accumulated in our
own more practically-oriented work as the foundation for determining,
synthesizing, and summarizing the artifacts in a Design Thinking-based artifact
model that is described in this section. Figure 6 presents the development steps we
followed.

Figure 6 Development Steps of a Design Thinking-based Artifact Model (see

also Hehn 2020)

Identification of Design Thinking artifacts: Three sources of evidence provide data
triangulation (and construct validity) to identify relevant Design Thinking artifacts
(Yin 2014). The results of a Delphi study about the most used methods in Design
Thinking (Hehn et al. 2018), empirical findings from multiple-case studies (Hehn
& Uebernickel 2018; Hehn et al. 2018), and existing practitioner cataloges (Doorley
et al. 2018; IDEO.org 2015; Uebernickel et al. 2015) serve as our main basis. The
final set of artifacts included 65 Design Thinking-related artifacts.

Construction and evaluation of an initial artifact-based Design Thinking model:
The initial model with 65 Design Thinking artifacts was evaluated in unstructured
interviews with four Design Thinking experts from academia and industry. The
experts were required to have either applied or researched Design Thinking methods
for a considerable amount of time. Specifically, people were chosen when they had
a proven track record of using Design Thinking in the context of innovative
software-intensive projects for the past three years. Based on the feedback, three
main findings evolved: First, the completeness of relevant artifacts and their

20

attributions to the Design Thinking phases have been corroborated by all experts.
Second, the original structure was adapted for better readability and
comprehensibility from top to bottom according to the chronological order in which
they typically appear in a project. Third, the model was refined to fit the frame of
reference in terms of granularity of the artifacts. The second version of the model
encompasses 21 artifacts and is presented in this book chapter.

Construction of the final artifact-based Design Thinking model: The revised and
final version of the artifact-based Design Thinking model is visualized in Figure 7.
It encompasses 24 Design Thinking artifacts structured into problem-oriented
artifacts (sub-classified into define, needfinding, and synthesis) and solution-
oriented artifacts (sub-classified into ideation and prototype & test).

A more detailed description of each content item can be found in the Appendix.

21

Figure 7 Design Thinking Artifact Model (see also Hehn 2020)

22

4 An Integrated Artifact Model Combining Design Thinking and
Requirements Engineering

In the following, we present an integrated model that combines Design Thinking
and Requirements Engineering artifacts. We motivate the development, the
structure, and implications for researchers and practitioners.

4.1 Development of an Integrated Artifact Model

An artifact-oriented reference model, such as those shown in the sections before,
and that aims at integrating Design Thinking into a holistic engineering context is,
as we argue, the only appropriate way to accommodate the variety of processes and
methods of both approaches. Artifacts determine what must be accomplished (the
work products and their interdependencies) instead of how it has to be accomplished
(the steps that have to be taken). Further, defining a comprehensive view of the
“desired” system and its key functionalities and features is an important objective
of both Requirements Engineering and Design Thinking. The artifacts produced
along Design Thinking and Requirements Engineering activities are used to support
product design and project management decisions throughout the development
process and product life cycle. The quality and appropriateness of these artifacts is
therefore imperative for the successful development and acceptance of a software-
intensive system. A model that encompasses the relevant artifacts of Design
Thinking and Requirements Engineering can outline the synergies and differences
between both approaches. While keeping a consistent structure and terminology,
this condensed view focuses on the created work products, their contents, and
dependencies, and it allows to abstract from their particularities of various processes
and methods, which would otherwise render a comparison difficult.

Our integrated artifact model, therefore, contains and structures all the artifacts
referenced, modified, or created in Requirements Engineering and Design Thinking
in software-intensive development projects. To be useful, the model should support
the re-use of knowledge and should be tailorable to certain situations in an efficient
manner. The aim is to integrate Design Thinking and Requirements Engineering
artifacts to simplify the adoption and configuration (i.e., usage schemes) of Design
Thinking for Requirements Engineering.

Our goal was to establish a reference model that should

1. support the integration of both approaches respecting their different
“flavours”

2. provide flexibility in the way of working to cope with the various
influences in individual project environments and for organisational needs,
and

23

3. enable a reproducible creation of work products in the context of
innovative software-intensive development projects.

Similar as done for the development of the artifact model for Design Thinking itself,
we show the steps for the construction and evaluation of our final combined artifact-
based reference model for Design Thinking and Requirements Engineering in
Figure 8.

Figure 8 Construction and Evaluation of an Integrated Artifact Model (see also

Hehn 2020)

The process of mapping artifacts from Design Thinking and Requirements
Engineering was performed by two experts in Design Thinking and Requirements
Engineering. The comparison was performed with 24 Design Thinking artifacts and
24 Requirements Engineering artifacts. Based on these activities an initial
integrated artifact model for Design Thinking and Requirements Engineering was
created. This model has been continuously tested with Design Thinking and
Requirements Engineering academics and practitioners to adapt the relevant
artifacts and their interdependencies for a comprehensive overview. Details on the
approach can be taken from Hehn 2020.

4.2 Integrated Artifact Model

The integrated artifact model is presented in Figure 9. It establishes a blueprint of
relevant artifacts, i.e., the work results, contents, and dependencies of Design
Thinking and Requirements Engineering. All artifacts are denoted in rectangles
including the name of the artifact and a number. Associations depict relations
between the artifacts, however not exhaustively, for reasons of reducing visual
complexity. The Design Thinking phases (dotted line) provide a sub-structure for
organizing the Design Thinking artifacts.

24

Figure 9 Integrated Artifact Model (see also Hehn et al. 2020, p. 27)

Table 2 summarizes the elements used to compose the artifact model.

Table 2 Overview of Elements in the Integrated Artifact Model

Representation Description

The folder box denotes the layers context, requirements, and system as the
overarching structure of the artifact model

The dotted line indicates the Design Thinking phases (Define, Needfinding,
Synthesis, Ideate, Prototype, Test) for means of comprehensibility

The dark rectangle denotes a Design Thinking artifact including the artifact name, a
number in the artifact model and an icon

The grey rectangle denotes an Requirements Engineering artifact including the
artifact name, a number in the artifact model and an icon

The white rectangle denotes a combined artifact (Design Thinking and
Requirements Engineering artifact) including the artifact name, a number in the
artifact model and an icon

The arrow denotes a unidimensional relation between artifacts. It expresses an
input-output relationship

25

The overall structure of the model is orientated along the three layers of the
AMDiRE model (context, requirements, system) — each capturing a collection of
relevant content items from Design Thinking and/or Requirements Engineering.
As discussed earlier, the context layer covers the information relevant to define the
context and includes, for example, the overall project scope, stakeholder
information, a domain model, and assumptions of the project team, and underlying
goals and constraints. Hence, much of the information captured in Design Thinking
concentrates on this layer.
The requirements layer encompasses what is necessary to operate in this context
and captures, for example, the system vision, high-fidelity prototypes, a usage and
behaviour model, and the function hierarchy as entry points for the system layer.
Similar to the context layer, much of the information here is documented using
natural language, occasionally reflected, however, also in models (e.g., for data and
functional perspectives on user-visible system behaviour).
Finally, the system layer includes information on how the system is to be realized
and includes, for example, a logical component architecture and a specification of
the desired behaviour, e.g., via function models. Again, information within this
layer is documented using both, natural language and conceptual models (data,
function, behaviour).

The integrated artifact model consists of three artifact types that encompass 40
content items with various relations. Out of all content items, 16 can be associated
with Design Thinking, 16 with Requirements Engineering, and 8 with both (see
Figure 10). The latter can be further distinguished into artifacts with similar
semantics but different purpose (3 out of 8). These include the design
challenge/project scope (#01), the business case (#03), and the objectives and goals
(#05). The main reason for their different purpose is that in Requirements
Engineering these artifacts have a convergent nature while in Design Thinking they
can be considered as open because they provide the opportunity for a broad context
exploration.

Figure 10 Distribution according to Artifact Type (see also Hehn 2020)

26

The distribution of artifact types according to the specific layers in the artifact model
is depicted in Table 3.

Table 3 Distribution according to Layer (see also Hehn 2020)

Layer Design
Thinking

Design Thinking and
Requirements Engineering

Requirements
Engineering Total

Context 14 5 2 21

Requirements 2 3 8 13

System 0 0 6 6

The model positions most artifacts within the context layer (21). Most Design
Thinking-related artifacts can also be found here (14 Design Thinking only and 5
Design Thinking & Requirements Engineering artifacts). Next to the data model
(#29, #37) the glossary (#09, #34, #40) is an Requirements Engineering-only
artifact that can be found in all layers. This artifact type is revised based on the
specific layer objectives. Starting in the context layer, the design challenge/project
scope (#01) defines the relevant problem and primary scope of a project. Within
this realm, the stakeholder map/model (#04) captures the most relevant stakeholders
and their relationships. They provide one important rationale for the requirements
and goals of the system (#05). The domain model (#06) contains context
information and constraints (#02) about the operational environment connecting it
to the requirements layer. Design Thinking artifacts complement and expand these
mainly Requirements Engineering-related artifacts with a broad and human-centred
perspective. For example, field study results (#11) and insights (#15) help to frame
the project scope (#01) and inform specific use cases and scenarios (#25, #26) as
defined in the requirements layer. Low- and medium-fidelity prototypes (#18, #20)
are mainly leveraged to better understand stakeholder needs and system context.

The requirements layer contains five Design Thinking-related artifacts (two Design
Thinking only and three Design Thinking & Requirements Engineering artifacts)
and eight Requirements Engineering artifacts. The system vision (#24) denotes the
general concept and idea of the intended system. High-fidelity prototypes (#22) are
a way to visually enrich the system vision (#24) and to illustrate the key
functionalities and general form of interaction (app, desktop solution etc.). Agreed
upon by the relevant stakeholders, a system scope, i.e., major features and use cases
as well as its constraints (#32), is specified. A service model (#26) defines the
services the system shall offer complementary to the use cases defined through a
use case model (#25). User-visible system functions are structured in a functional
hierarchy (#28) which is the entry point into the system layer.

27

The system layer holds six Requirements Engineering artifacts and none of them
are related to Design Thinking. While the context and the requirements layers
include the information aspects that are typically found in Design Thinking- and
Requirements Engineering-related artifacts, the system layer includes the items
addressing what is known as the solution space and providing the interface for
Requirements Engineering into design activities. In the system layer the functions
of the functional hierarchy (#25) are related to components (#38), a functional
model (#36), and their internal behaviour (#39), which also provides the basis to
identify the data model (#37).

A more detailed description of each content item can be found in the Appendix.

4.3 Organizational Model

The integrated artifact model can be seen as a foundation for a more comprehensive
organizational model that includes the following components: (1) the artifact model
specifies what needs to be produced or exchanged; (2) the role model describes who
should produce it and which particular responsibilities are needed; (3) the activity
model describes what to do in order to create, modify, or use an artifact; (4) the
process model denotes when the artifacts, roles, and activities should be produced
or performed; and (5) standards and tools conceptualize with what all of the above
mentioned activities are performed (Méndez Fernández and Penzenstadler 2014).

Figure 11 Overview of Artifact Types, Roles, and Milestones

Figure 11 shows the artifact types in relation to roles and responsibilities (left side)
and in relation to milestones (right side) which can be used to integrate the model
into a process. We distinguish the Design Thinking- and the Requirements
Engineering-view.

28

Note that in Requirements Engineering and in accordance with AMDiRE, we assign
one role for each artifact type. Each role has the responsibility independent of other
potentially supporting roles such as those provided by the surrounding software
process model (e.g., product manager), and independent of whether same persons
are assigned to different roles in a project. The Business Analyst has the
responsibility for the context specification, the Requirements Engineer has the
responsibility for the requirements specification serving also as a mediator between
the business analyst and the system architect. That system architect, finally, has the
responsibility for the system specification. In Design Thinking, a multidisciplinary
team takes up the role to define the context and system vision. Often this team is
drawn from various disciplines to integrate diverse perspectives constituting an
important aspect in stimulating creativity and generating the potential for more
comprehensive and original results. The willingness to cooperate with different
people is an important aspect in Design Thinking practice since solutions are mainly
generated through collaboration, both with users and by composing a
multidisciplinary project team (around six team members). Typically, Design
Thinking team structures are not subject to hierarchies and departmentalization but
rather a way of radical collaboration that allows leadership to pass in-between
members. Team members drawn from various disciplines integrate diverse
perspectives constituting an important aspect in stimulating creativity and
generating the potential for more comprehensive and original results. The versatile
Design Thinker has acquired the position of a general problem solver possessing
strengths in two dimensions which are commonly visualized as a “T-shape”. Deep
Knowledge corresponds to the academic expertise or a depth of skill that allows the
Design Thinker to adapt their knowledge to the problem and make tangible
contributions to the result. Broad knowledge and skills represent the ability to reach
out to other specialists coming from a wide range of disciplines entailing a general
openness to new ideas, people, and ways of doing.

For each artifact type, we furthermore define two milestones: An entry-level
milestone indicates the point in time in which the first content item is expected to
have a sufficient maturity in its content; for instance, the system vision in the
requirements specification comprises an overview of the major use cases; its
definition and agreement indicate that the use cases are succinctly defined to be
further refined and modelled and, thus, allowing, for example, for first cost
estimations based on function points. The second one indicates when the
corresponding artifact is formally accepted.

Those milestones are sufficient for a process integration and instantiation as they
give us the opportunity to formally embed the artifacts into project-specific
decisions. Therefore, we enrich those existing milestones in analogy to the
AMDiRE milestones to cover the Design Thinking artifacts following the same
logic.

29

4.4 Findings and Practical Implications

Our integrated artifact model offers several important insights and implications for
using Design Thinking in the context of Requirements Engineering. In the
following, we highlight those we deem most important.

Various commonalities between Design Thinking and Requirements Engineering
can be seen if the latter is understood as an iterative approach. The differences
should be seen as complementary activities. The integrated artifact model
distinguishes between more problem-oriented and more solution-oriented artifacts
which addresses the principles of both Design Thinking and Requirements
Engineering. Problem-oriented artifacts contain information about the underlying
problem context including the goals and needs of stakeholders as well as specific
system conditions or constraints. Solution-oriented artifacts contain information
about the corresponding system vision and how to solve the problem stated in the
project description.

The integrated model shows that Design Thinking mainly contributes to early
Requirements Engineering activities with up to 14 additional context artifacts for a
comprehensive understanding of the problem domain. Accordingly, Design
Thinking expands the toolbox for Requirements Engineering by emphasizing the
creation of artifacts that describe the relevance of the system vision. Design
Thinking could even be exclusively used to perform these activities. A
complementary approach of Design Thinking and Requirements Engineering,
however, seems necessary for shaping the requirements layer. While both concepts
produce overlapping artifacts (system vision, functional requirements, usage, and
service models), their realization might take different forms. Design Thinking uses
mainly a high-fidelity prototype to describe the system vision and key
functionalities. Requirements Engineering specifies the same mainly by using rich
picture and class diagrams. In addition, other requirement types, such as quality or
deployment requirements are predominantly specified with common Requirements
Engineering techniques. Requirements Engineering is exclusively used to specify
system artifacts and to provide the interface to system design activities. Hence,
Requirements Engineering also expands the toolbox of Design Thinking.

Following our AMDiRE role model as described in Méndez Fernández and
Penzenstadler (2014) (see Figure 11), implications can be seen in expanding the
knowledge of business analysts with Design Thinking skills and, vice versa, in
equipping design thinkers with Requirements Engineering skills to gain
appreciation for subsequent software design activities. Lauenroth (2018) calls this
role ‘digital designer’ and defines them as “someone who is capable of creating a
vision for digital products, processes, services, business models, or even entire
systems, free from technical or organizational obstacles as well as apparent
reservations (outside-in thinking). Digital designers are also capable of ultimately
turning this vision into reality. They transfer (technological) possibilities into (new)

30

product/process/service/business model/system design. To do all of this, digital
designers must be skilled in design and the available technologies and be capable
of interacting with all stakeholders.” (p. 8) For training providers, the integrated
artifact model can support the development of new training programs and learning
formats about combining Design Thinking and Requirements Engineering. A new
role with skills and talents in both approaches may be fostered. Current training
courses in Design Thinking or Requirements Engineering can be enhanced by
integrating the respective other approach to gain understanding about the benefits
and shortcomings of the two incorporated concepts.

For project managers, several contributions can be seen. First, the model can be
considered a support system to define and distinguish responsibilities in a project.
Project roles can be directly coupled to the creation of artifacts, for which they must
take the responsibility. Second, project managers can assign completion levels and
establish progress control for the creation of artifacts. Quality assurance metrics can
help to objectively measure the degree of completeness of an artifact in the artifact-
based reference model. Third, the model ensures flexibility for integrating processes
and customizing the reference model at project level. The combined model allows
for variations of the created artifacts in response to individual project
characteristics. For example, by defining the content-focus of the project, the
creation of either Design Thinking or Requirements Engineering artifacts might be
of greater help as each approach emphasizes a different content type. For example,
to better understand the user and business context, the creation of Design Thinking
artifacts might be preferred. Requirements Engineering artifacts should be at the
center of attention to better describe the technical perspective and answer feasibility
questions. Teams may also jump back and forth between both approaches if new
questions come up in one or the other area. Fourth, the model can act as a basis for
an effective requirements management, where the objective is to administrate the
outcome of Requirements Engineering activities. This administration includes, for
example, progress and traceability control, impact analyses, or risk mitigation
(Jönsson and Lindvall 2005). A structured and consistent content specification is a
prerequisite to perform such activities. Hence, the integrated artifact model can
enhance the effectiveness of requirements management activities due to its defined
set of interdependencies and chosen artifacts.

For team members of software-intensive projects (i.e., requirements engineers,
business analysts, or design thinkers) the model offers a blueprint for creating
syntactically consistent and complete results with respect to the respective
application domain. While not all artifacts from the model must be considered in
every project, the overview still serves as an orientation and connection to further
design and development activities. The latter point is especially of interest for
Design Thinking as this has been continuously criticized to be insufficiently linked
to development processes (e.g., Häger et al. 2015).

31

5 Operationalization Strategies

In the following chapter we present three operationalisation strategies to integrate
Design Thinking into Requirements Engineering when designing innovative
software-intensive systems.

5.1 Overview

The integrated artifact model enables a flexible creation of the introduced Design
Thinking and Requirements Engineering artifacts. This means that the decision
which and when artifacts should be produced need to be customized according to
specific project characteristics. To provide a guideline three operationalization
strategies are proposed to integrate Design Thinking and Requirements Engineering
in different ways. The strategies reflect existing research findings about integrating
Design Thinking into software development practices (e.g., Dobrigkeit and de Paula
2019; Lindberg et al. 2012; Hehn & Uebernickel 2018).
We suggest the following three strategies: (1) Run Design Thinking prior to
applying Requirements Engineering practices (upfront Design Thinking); (2) infuse
the existing Requirements Engineering process ad-hoc with selected Design
Thinking tools and artifacts (infused Design Thinking); or (3) combine the previous
two strategies and integrate Design Thinking into Requirements Engineering
practices on an ongoing basis (continuous Design Thinking). The ratio between
Design Thinking and Requirements Engineering differs within the three proposed
operationalization strategies. The better the original problem is understood, the
more activities are biased towards straightforward design and implementation tasks
(i.e., Requirements Engineering artifacts) (see Figure 12). The less it is understood,
the more activities are directed towards context understanding and problem
exploration (i.e., Design Thinking artifacts). Thus, the defined project objective and
context are the guiding parameters for the selection of an appropriate
operationalization strategy.

32

Figure 12 Navigating Upfront, Infused, and Continuous Design Thinking

Strategies (see also Hehn 2020)

5.2 Three Strategies to Operationalize and Integrate Design
Thinking

In the following, we introduce our three strategies to operationalize our integrated
Design Thinking approach. For each, we follow a structured approach of listing
objectives, prerequisites, key activities, necessary roles, and outcomes followed by
showing an exemplary practical case. This shall make our strategies more tangible.

5.2.1 Upfront Design Thinking

Objective: Upfront Design Thinking is best applied when there is a high level of
uncertainty about the problem (i.e., stakeholder and user needs) and the
corresponding solution. Creating Design Thinking-related artifacts through
applying Design Thinking helps to understand the problem in depth and to define
the overall concept of an idea. It is typically used at an early project stage to provide
clarity for unclear user needs and to define a (high-level) solution vision (e.g., “How
does the future patient support program for multiple sclerosis patients look like?”).

Prerequisites: A problem statement should have been defined as a minimum
starting point for applying upfront Design Thinking. Additional required conditions
are the setup of a multidisciplinary project team, access to potential users and other
stakeholders as well as Design Thinking training for project members.

33

Key activities: Design Thinking activities are typically performed in the form of a
pre-project to identify relevant features that are worth implementing. The Design
Thinking process model (define, needfinding, synthesis, ideation, prototyping,
testing) guides through a cyclical creation of context and requirements artifacts. The
outcome is used as a basis for performing further Requirements Engineering
activities that complement Design Thinking artifacts with Requirements
Engineering specific ones.

Roles: Two roles during the upfront mode are required. First, the Design Thinking
team is responsible for planning and executing the activities. This team consists of
four to six people from different areas of expertise depending on what knowledge
will be relevant for the project, including for example subject matter experts, IT,
marketing, sales, design personnel (Häger et al. 2015). Second, a person or group
of people, who has defined the initial design challenge and project scope, is defined
as the project sponsor. The person in this role typically provides continuous
feedback to the team and connects it with others to enable synergistic effects and
avoid duplicate efforts (Häger et al. 2015). The following two roles are optional:
First, an extended team of (internal) experts that provide further domain knowledge
and expertise for the Design Thinking team. Second, a Design Thinking coach or
coaches who support the project team with methodological guidance. They
introduce Design Thinking techniques, facilitate team meetings, and ensure that the
team is focused on delivering the tasks and artifacts. As such, the coach should have
a profound understanding of Design Thinking to provide useful techniques and
guidance at appropriate times (Häger et al. 2015).

Outcome: The main deliverable of the upfront strategy is a clear system vision as a
basis for performing further Requirements Engineering activities. The system vision
usually takes the form of a mockup (i.e., high-fidelity prototype). Along the way
the team will create a comprehensive set of Design Thinking artifacts, which should
make it clear why each aspect of the prototype is intended in the way it is designed.
High level user stories and a list of usability requirements based upon test results
accompany the set of artifacts created by following the Design Thinking process.

34

Case Example

The international Alpha Insurance company wanted to develop a new service for
their new target group of “young professionals”. A project team stemming from
five different business functions (marketing, IT, actuary, product manager,
claims) spent 40% of their time to follow the Design Thinking process in an
iterative manner for three months. The solution vision resulted in a tested
medium-fidelity prototype for a digital on-demand insurance that could be
activated and deactivated based on the user’s preferences. The Design Thinking
team handed over the prototype to the implementation team for further
specification, testing, development, and market introduction. Transferred
artifacts included a project documentation with twenty field studies, two
personas, five opportunity areas, and six low-fidelity prototypes with learnings
about failures. The final solution vision (in form of a mockup) specified key
features and their usability. The implementation team performed tests to validate
these features, their usability, and their service model.4

5.2.2 Infused Design Thinking

Objective: The main goal of this strategy is to support existing Requirements
Engineering activities with selected Design Thinking techniques. This includes, for
example, activities to clarify fuzzy requirements, foster creativity, gain new ideas,
or to better understand user needs.

Prerequisites: The prerequisites for applying this strategy depend on the specific
problem to be addressed. The problem should have a clear scope. The prerequisites
as described in the previous still apply.

Key activities: An infused approach makes use of selected artifacts and leverages
selected methods from the Design Thinking toolbox and integrates them into an
existing Requirements Engineering process. In case of challenges encountered
during the Requirements Engineering process, Design Thinking tools can be
initiated; hence, their application is ad-hoc. The main activity of this strategy is the
setup of focused workshops with selected Design Thinking tools (Dobrigkeit et al.
2108). These workshops can last three hours or several days depending on the
objectives. For example, the goal of a workshop to generate new solution ideas
could be formulated like this: “Create ideas to optimize the user interface of our
platform, making it look and feel more emotional, and letting it appear less
technical.” This session used persona and customer journey artifacts to brainstorm
new ideas.

4 This case has also been published in Hehn et al. 2020 and Hehn 2020

35

Roles: In the infused setting, the people or person performing the Requirements
Engineering activities are the addressees of receiving Design Thinking guidance in
the form of workshops. Other workshop participants with different areas of
expertise may be added, e.g., subject matter experts, IT, marketing, sales, design,
depending on what knowledge will be relevant to achieve the workshop goal. A
workshop typically consists of five to twenty participants. Like the upfront
approach, a Design Thinking coach introduces the selected Design Thinking
techniques and moderates the workshop and team discussions. The project sponsor
can also be integrated to provide feedback and define the context for the general
direction of the workshop.

Outcome: Due to the flexible approach of the infused strategy, the outcome is
situation-dependent based on the previously defined objectives. The deliverables
can be (new) features, user requirements, or test feedback – all following the
Requirements Engineering process. In the context of the combined artifact model
this means that the creation of Requirements Engineering artifacts is enhanced by a
selected set of Design Thinking artifacts.

Case Example

Beta Enterprises is an international electronics group that wanted to evaluate the
possibilities of smartphone applications (e.g., emergency apps, task lists,
maintenance procedures) for container ships in a marine context. The main goal
was to define requirements from a user point of view and to foster creativity for
solution finding. In a highly regulated environment, a Design Thinking infusion
was chosen to support the ongoing Requirements Engineering activities with
selected tools from needfinding and prototyping. Five Design Thinking infusion
sessions (one to two days) were conducted within five months. Produced artifacts
included field studies for precise user requirements (it was the first time the team
had been in close contact with marine captains) and tested medium-fidelity
prototypes to strengthen service and usage models. According to the workshop
participants, having direct user contact raised the confidence level in the success
of the intended solution. Initial concerns about not finding interview partners in
a highly sensitive B2B setting turned out as unjustified.5

5.2.3 Continuous Design Thinking

Objective: The main goal of this strategy is to integrate Design Thinking principles
with Requirements Engineering activities on a continuous basis. Beyond the
specific project context, this can also become part of an organizational change
program or corporate strategy.

5 This case has also been published in Hehn et al. 2020 and Hehn 2020

36

Pre-requisites: Continuous Design Thinking is recommended when addressing
complex (“wicked”) problem settings, which require continuous user involvement
along all software engineering activities. In addition to the prerequisites described
for the previous two strategies, (selected) project members should possess both
Design Thinking and Requirements Engineering knowledge.

Key activities: Continuous Design Thinking utilizes the Design Thinking mindset
as guiding principles. On an operational level, this translates into a seamless
combination of the upfront and infused strategy and the potential setup of a new
project role for a human-centric requirements engineer. The activities comply with
both Design Thinking and Requirements Engineering elements to establish an end-
to-end view from exploring a user's need to conceptualizing a solution vision and
specifying a functional system. When starting a project, the upfront strategy can be
used to provide clarity about the problem context and to elicit (user) requirements
in a structured yet creative manner. A high-resolution prototype can help to specify
the functionalities of the system vision. When moving on to the more technical side
of requirements specification, an ad-hoc usage of Design Thinking methods can still
be initiated in case features are not defined well enough from a user point of view
for example.

Roles: The instantiation of a new role incorporates Design Thinking expertise as
well as Requirements Engineering expertise and mediating between both schools of
thoughts. In this strategy it is of great importance that the new role can react quickly
when choosing methods and artifacts. The role enables the team to work towards a
final product in incremental steps. The responsibilities of the project team during
this strategy are like the preceding ones as the continuous strategy combines the two
other strategies. The team plans and executes the activities to define the final
system. The project sponsor has similar responsibilities as described in the previous
sections.

Outcome: The continuous strategy results in a comprehensive set of Design
Thinking and Requirements Engineering artifacts as shown in Figure 9. The
requirements specification and system design are based on and traceable to
customer needs derived from the context specification.

37

Case Example

Gamma Energy is a large energy provider with subsidiaries worldwide. A diverse
project team applied an upfront Design Thinking approach to explore the
potential of platforms in the utility sector. The outcome was a solution vision for
a digital home improvement platform to advance lead generation. To ensure a
human-centred mindset throughout specification and development, a new role
was established to use selected Design Thinking tools for enhancing the
prototype and filling the backlog with new features. Produced Design Thinking
artifacts included high-fidelity prototypes with usability- and feature-oriented
test feedback and new solution ideas. Scrum became the guiding framework for
development, which enabled the entire project team to work in sprints. During
development Design Thinking prototypes were used as boundary objects to
enhance communication with relevant internal stakeholders and to foster a
human-centred mindset within the team.6

5.3 Discussion

Our presented operationalization strategies reflect the ongoing discourse of
describing Design Thinking at different levels in software engineering approaches
(e.g., Brenner et al. 2016; Dobrigkeit and de Paula 2019). In line with other authors
we suggest that the way in which Design Thinking should be used depends on the
specific context and objectives of a project. Accordingly, three different strategies
with different Design Thinking formats (e.g., process phases, workshops, single
methods) were suggested which are similar to other proposed strategies in research
in the context of (agile) software development. Depending on the situation each
operationalization strategy offers different benefits but also challenges. Table 4
discusses both for each strategy.

6 This case has also been published in Hehn et al. 2020 and Hehn 2020

38

Table 4 Benefits and Challenges of each Operationalization Strategy (see also
Hehn et al. 2020 and Hehn 2020)

Strategy Benefits Challenges

Upfront
Design
Thinking

- The full potential of Design
Thinking is leveraged while
changes to Requirements
Engineering are not necessary

- Due to the focus on problem
exploration deep context
understanding is achieved

- The solution concept has traceable
links to user needs

- Resource- and time-intense

- Lost (implicit) knowledge and
potential starvation of results when
handing over Design Thinking
results

- Little attention is paid to further
development critical artifacts such as
quality requirements, system
constraints, or data models

Infused
Design
Thinking

- Intervention character requires only
minimal changes in existing
Requirements Engineering practices

- Resource and time friendly due to
ad-hoc usage of selected tools
(especially compared to upfront
approach)

- Low adoption hurdle for Design
Thinking methods

- Risk of neglecting problem
understanding (especially compared
to the upfront approach)

- No embedding of Design Thinking
mindset due to situational Design
Thinking workshops

- Little attention is paid to further
development critical artifacts such as
quality requirements, system
constraints, or data models

Continuous
Design
Thinking

- Seamless integration into existing
Requirements Engineering practices
including development critical
artifacts

- High likelihood of infusing a
human-centred mindset within the
project team

- Precise and traceable (user)
requirements through continuous
identification of new requirements
and testing

- Requires commitment, resources,
and time to develop continuous
integration of both approaches in an
organisation

- Continuous Design Thinking is
highly dependent on the staffing of
the project team

- Requires an organisational mind
shift and support, potentially even an
organisational restructuring

Beside the project context, the existing maturity level of Design Thinking within an
organization can be considered an influencing factor when choosing the ‘right’
strategy. While Requirements Engineering is usually an established practice in
industry, Design Thinking is still relatively new. The decision to integrate the two
approaches also depends on the level of courage, given time, and dedicated
resources. As a rough guideline, the infusion strategy provides a reasonable starting
point as it applies focused Design Thinking interventions within established
practices. While the upfront strategy also keeps existing procedures, it requires more

39

time and resources. Finally, the continuous strategy demands for a commitment
from management to foster mindset change in an organisation or department.

A “morphing nature” of Design Thinking in software-intensive development
projects can be stipulated, evolving from process-guidance, via toolbox support to
the manifestation of a human-centered mindset of the project team. When
approaching “wicked” problems, Design Thinking starts with a structured, upfront
approach to define a clear product vision. Then, it transforms into a loose bundle of
tools and a mindset that link well to common agile practices. Figure 13 visualizes
this evolution.

Figure 13 Evolution from Process, via Toolbox, to Mindset (visualization based
on findings from Hehn and Uebernickel 2018, see also Hehn 2020)

6 Synthesis of Findings

The following sections summarize our findings from sections 4 and 5.

6.1 Leveraging the Best of Both Worlds

Design Thinking and Requirements Engineering are not mutually exclusive but
rather reinforce and complement each other. Using Design Thinking for
Requirements Engineering means putting more focus on the early phases of the
process to determine customer needs, requirements, and context, which affects the
system vision with its product features and functionalities. Design Thinking
expands the toolbox for Requirements Engineering by emphasizing artifacts for

40

defining the relevance of the system vision. It fosters a holistic exploration of the
problem context and defines precise user requirements. A prototype shapes the
vision of the system. These artifacts complement the more technical-oriented
artifacts from Requirements Engineering with a human-centered perspective. In
addition, Requirements Engineering expands the toolbox of Design Thinking by
connecting Design Thinking artifacts to later-staged software development
processes. In this sense, Design Thinking-related artifacts are transformed into
functionalities for technical realization. What counts in the end in Requirements
Engineering is the set of elaborated requirements, while in Design Thinking, not
only the prototype is the ultimate outcome, but the learning curve leading to it.
For creating a lasting impact of the system vision on the upcoming design and
implementation activities, a balance should be found between the benefits of early
experimentation as done in Design Thinking and the advantages of institutionalizing
a proper structure and documentation for subsequent software engineering activities
as achieved by Requirements Engineering.

6.2 A Comprehensive Blueprint for Innovative Software-
intensive Systems

We contribute an evaluated artifact model for Design Thinking and Requirements
Engineering that can be tailored to specific project situations. The model is
descriptive and prescriptive at the same time. It is descriptive by depicting the most
common Design Thinking and Requirements Engineering artifacts as used in
software-intensive development projects. It can be seen as a blueprint for designing
new innovative systems, which makes it also prescriptive as it provides a guideline
and orientation for generating the artifacts in development projects. Managers can
use the model to evaluate their Requirements Engineering processes and, thereby,
improve effectiveness and create solutions in a more human-centred fashion.

6.3 There is no “One Size Fits All”-Integration Strategy

Operation modes that integrate Design Thinking into (agile) software development
approaches have been proposed before (e.g., Lindberg et al. 2012; Häger et al. 2015;
Dobrigkeit et al. 2018). Building on these findings and triangulating them with
empirical data from industry, three operationalization strategies have been
identified in which Requirements Engineering can profit from Design Thinking and
vice versa: (1) Run Design Thinking upfront to Requirements Engineering practices
(upfront Design Thinking), (2) infuse Requirements Engineering with selected
Design Thinking tools (infused Design Thinking), or (3) apply Design Thinking and
Requirements Engineering continuously in a flexible manner (continuous Design
Thinking). The decision which strategy to follow depends on the project context

41

and objective. The first strategy is recommended when the problem and solution
space is unclear. Here, the Design Thinking process provides a guiding structure for
requirements elicitation and the specification of a solution vision. The second
strategy offers requirements engineers a way to make use of selected Design
Thinking methods when they feel it is necessary. Typically, these are situations in
which project members face difficulties in an ongoing Requirements Engineering
process that might be addressed by Design Thinking methods. The third strategy
supports a continuous yet flexible application of the Design Thinking process and
ad-hoc tools. The continuous approach entails the evolution from using Design
Thinking as a guiding process to applying it as a toolbox for adaptive support up to
implementing Design Thinking principles in the mindset of project members. This
strategy should be chosen when (1) a sustainable integration of both Design
Thinking and Requirements Engineering is intended and (2) the project requires a
continuous integration of users into the development project. In this context, the
human-centric requirements engineer is a new role that incorporates skills from both
disciplines. Business analysts may leverage Design Thinking to deeply explore the
system context while design thinkers may equip themselves with Requirements
Engineering knowledge to better connect their results to subsequent software
design.

6 Conclusion

Design Thinking offers great potential for promoting innovative, user-centered
concepts as it promises to place users and their needs at the core of the design
process. This gave rise to great interest in using Design Thinking for the engineering
of software-intensive systems and services which are nowadays challenged by their
pervasive nature, ever-growing complexity, and the inherent difficulty to capture
requirements and development constraints in a user-centric manner. Despite the
popularity of Design Thinking in research and practice, it is, however, often treated
in isolation without much care for a clear, seamless integration into established
software engineering approaches. In fact, too often, we tend to pretend that problem
solving ends with a deeper understanding of the problem domain and by building
mostly non-technical prototypes and, thus, leaving open an effective transition into
actual development and quality assurance. At the same time, in software
engineering research and practice, we pretend too often that requirements are just
there and that they simply need to be elicited and documented (if at all) and, thus,
missing out great potential of fully exploring the problem space in a human-centric
manner.

The idea of integrating Design Thinking into Software Requirements Engineering
approaches to leverage the potential of a deeper problem exploration and
discovering and specifying requirements more thoroughly is not new. However,
Requirements Engineering and Design Thinking come both in various forms and

42

interpretations rendering such an integration cumbersome. Thus, integration efforts
typically end at the high level of abstract principles, values and mindsets, and
practices. In this chapter, we therefore took an artifact-centric perspective to (1)
synthesize both at a terminological and conceptual level, and to (2) lay the
foundation of effectively guiding the problem-oriented specification of
requirements based on a seamless and holistic underlying artifact model. Our
contributions focus on the following two aspects:

● We elaborated on the very fundamental principles and practices of both
Design Thinking and Requirements Engineering and established two
independent artifact models that reflect those principles. Here, we drew
from both the state of the art in Design Thinking and in Requirements
Engineering as well as from experiences made along two decades of
academic-industry collaborations.

● We integrated both, the artifact model for Design Thinking and the model
for Requirements Engineering and presented different operationalization
strategies of how to make efficient use of that integrated approach to create
human-centered software-intensive systems.

Note that rather than merely focusing on a purely academically oriented model, we
aimed at elaborating on essential terms, principles, and concepts while considering
and extending the perspective on the practical relevance as many results emerge
from academia-industry collaborations. The choice of the artifact-centric, process-
agnostic philosophy further served two major purposes. First, it allowed us to lay
such conceptual and terminological foundation for an integrated approach while,
second, not enforcing a rigid, pre-defined structure for one (and only one) specific
way of working (and thinking), hence, accommodating the various project situations
and disciplinary backgrounds we face.

This is in tune with the overall scope of this book. We aim at creating a space to
further foster debates and efforts in integrating both Design Thinking and Software
and Systems Engineering by inviting scholars and practitioners from both
interdisciplinary communities while not enforcing respective historically grown
worldviews on each other. One hope we associate with this introductory chapter as
well as with the overall book is to motivate the value of such an integration of both
worlds.

Acknowledgements

We would like to thank Falk Uebernickel for his continuous support and feedback
in previous articles and research efforts that provided major influence on our
findings presented in this book chapter. We further thank Manfred Broy and Walter
Brenner for stimulating discussions and feedback on earlier versions of this
manuscript.

43

Appendix

A. Artifact Description

The following appendix defines the content model of the combined artifact model
in detail giving for each content item a definition of the used concepts.

The Number (#) references the assigned number within the artifact model.
The Name captures the name and the type of the artifact. If the artifact can be
attributed to both Design Thinking (DT) and Requirements Engineering (RE),
different descriptions for both approaches (e.g., Design Challenge and Project
Scope) are marked by a slash (/). In this case, the description for the Design
Thinking-related artifact is provided first and the Requirements Engineering
expression second.
Description & Purpose denotes the content and main characteristics of each artifact
type. Interdependencies summarize the relationships between the artifacts regarding
their content within the artifact model. The description differentiates between the
input that artifacts receive from the content of other artifacts (‘input from’) and the
output that they provide for other artifacts in the artifact model (‘input for’).
The Notation suggests appropriate documentation and specification techniques for
each artifact (e.g., natural language, Unified Modelling Language (UML) class
diagrams, model-based documentation).

A.1 Context Specification

A description of the content items of the context specification is provided in Table
5.

Table 5 Content Items in the Context Specification

Name Description & Purpose Notation

01 Design
Challenge /
Project
Scope
(DT&RE)

Describes the business problem and provides
direction for problem analysis and development; has
an exploratory character in DT, a convergent
objective in RE.
Input for (#05), (#08), (#27), (#30).

Natural
Text

02 Constraints
and Rules
(DT&RE)

Restrictions and fixed design decisions that influence
the system design and implementation and must be
obeyed or satisfied; establishing them helps to run and
manage the project within the intended business and
technical restrictions; constraints are often explicitly
challenged in DT.
Input for (#05)

Natural
Text

44

03 Business
Case
(DT&RE)

Provides rationale for a design project and is used to
convince decision-maker or project sponsor; in DT its
main objective is to evaluate available execution
budget (resources and time), in RE it may have
concrete solution options in mind.
Input from (#01); input for (#05)

natural
text

04 Stakeholder
Map /
Stakeholder
Model
(DT&RE)

List of relevant stakeholders (internal and external) for
the project, typically including project sponsor or
client, project manager, product manager, other
(senior) decision-makers, investors, end users,
customers, operators, product disposers, sales and
marketing, or regulatory authorities; helps to identify
key internal and external stakeholders as sources of
requirements.
Input from (#01); input for (#05), (#07), (#25)

natural
text,
diagram,
UML
actor
hierarchy

05 Objectives
and Goals
(DT&RE)

Prescriptive statements of intent regarding business,
usage, or system goals issued by a stakeholder (e.g.,
quality-related, optimization-specific, behavioural,
anti-goals); provide direction for problem analysis and
system development; in DT the list contains mainly
high-level business goals and objectives provided by
the project sponsor to keep outcome and specifics open
for exploration; in RE they may be more precise.
Input from (#01), (#02), (#03), (#04); input for (#06),
(#24), (#25)

natural
text, goal
graphs

06 Domain
Model
(RE)

Composed of all real-life conceptual objects related to
a specific problem (incl. business entities, attributes,
roles, relationships, constraints); ensures an
understanding of the landscape of business entities in
the problem area and can be used to solve problems
related to that domain.
Input from (03#), (05#); input for (#09, #34, #40),
(#24), (#25)

UML
activity
diagrams;
Business
Process
Model
Notation
(BPMN)

07 Design
Space Map
(DT)

Overview of knowledge and knowledge gaps in the
context of the project; helps to structure the
exploration phase and provides a common
understanding of the design challenge; it evolves over
the duration of a project in which new knowledge is
added.
Input from (#01), (#04); input for (#10), (#11)

natural
text

45

08 Assumption
s
(DT)

Hypotheses about project and stakeholders to be
explored and tested in the project; provides a first
overview of possible team biases.
Input from (#01), (#04); input for (#17), (#18)

natural
text

09 Glossary
(RE)

List of all relevant business or technical domain-
specific terms to ensure their consistent usage
throughout the entire development life cycle; key
elements are terms, definitions, aliases, and related
terms
Input from (#04), (#06), (#07); input for (#34), (#40)

natural
text

10 Secondary
Research
Report (DT)

Summary of various sources of information and
insights from existing market research about the given
subject domain (e.g., market and benchmarking
reports, sales reports, internal databases, government
statistics, articles, research studies); the report
supports the project team to clarify research questions
and gain an initial understanding of the challenge
context
Input from (#07); input for (#12), (#15)

natural
text

11 Field
Studies
(DT)

Collection of raw data (incl. statements, observations,
pictures, videos) from interviewees; they help the team
to create a common understanding of the raw data and
empathize with the interviewees.
Input from (#04), (#07); input for (#12), (#13), (#14)

natural
text,
pictures,
videos

12 Thematic
Clusters
(DT)

Group of user statements, observations, and other
findings from primary and secondary research that
represent a specific subtopic of the project content;
they provide an overview of relevant topics within a
given domain and help the project team to recognize
patterns
Input from (#11), (#10); input for (#15).

natural
text

13 Personas
(DT)

Fictional characters that represent a specific
stakeholder group relevant to the project (incl. a
demographic profile, behavioural patterns, attitudes,
goals); they facilitate the understanding of (potential)
users’ needs, behaviours, motivations, and frustrations
and provide alignment for discussing design decisions.
Input from (#11); input for (#14), (#16), (#17)

natural
text;
pictures

46

14 Customer
Journeys
(DT)

Visual representations of the experience of a customer
when interacting with an organisation, product, or
service (activities, tasks, touchpoints); they offer a
systematic analysis of challenges, pain and gain points
that help to identify areas with innovation potential
Input from (#11), (#13); input for (#15), (#16), (#25)

natural
text;
sequence
& activity
diagrams

15 Insights
(DT)

Findings that occur because of synthesis and
interpretation of primary research; usually expressed
in one sentence to explain why something is happening
Input from (#11), (#12); input for (#16), (#17).

natural
text

16 Opportunity
Areas
(DT)

Potential for innovation based on insights and needs
found in primary research; they define specific
directions for next steps while they often go beyond
the project assignment itself; the formulation of
opportunity areas is rather action-oriented, while the
insights describe the status quo or a desired future
state.
Input from (#12) - (#15); input for (#17)

natural
text

17 Solution
Ideas
(DT)

Specific features and concepts on how to solve a given
problem statement (based on creativity techniques and
brainstorming)
Input from (#09); input for (#18), (#20), (#22)

Natural
text

18 Low-fidelity
Prototypes
(DT)

Tangible and testable artifacts that demonstrate the
key functionalities of an idea; examples are paper
prototypes, role plays, Wizard of Oz; particularly
suitable during the early stages of a project, when the
topic is still abstract or in the process of forming as
costs and effort are extremely low, which allows the
project team to explore various ideas at once
Input from (#17); input for (#18), (#20)

different
forms,
mostly in
a paper-
based
format

19 Scope-
oriented
Test Results
(DT)

Feedback from users and other relevant stakeholders
regarding the basic concept of an idea; it helps the
team to gain more empathy for their target group and
to decide which ideas to keep, to refine, and to drop
Input from (#18); input for (#20), (#22)

natural
text

20 Medium-
fidelity
Prototypes
(DT)

Non-technical prototype showing key features of the
target product or service; while low-fidelity prototypes
(#18) are useful to inspire new ideas, medium-fidelity
prototypes are mainly used to test and refine existing
solution ideas; they usually take more effort to build,
yet also provide a much more realistic representation
of the envisioned behaviour and user interface.
Input from (#17), (#18), (#19); input for (#21), (#22)

different
forms,
mostly
in a
digital
format

47

21 Feature-
oriented
Test Results
(DT)

Feedback from users and other relevant stakeholders
regarding key features and functionalities of the
prototype; they validate customer’s expectations and
help to prioritize functionalities for implementation
Input from (#20); input for (#22), (#25, 26)

natural
text

48

A.2 Requirements Specification
A description of the content items of the requirements specification is provided in
Table 6.

Table 6 Content Items in the Requirements Specification

Name Description & Purpose Notation

22 High-
fidelity
Prototypes
(DT)

Offers a clear vision of how the final system will look
and feel; they help the project team to gain
meaningful feedback for usability testing and are also
suitable to gain buy-in from clients and internal
project stakeholders
Input from (#17), (#18) - (#21); input for (#22),
(#24).

different
forms,
mostly in
a digital
format

23 Usability-
oriented Test
Results (DT)

Feedback from users and other relevant stakeholders
regarding the interaction with a product; the results
provide areas for improving issues of
understandability and point at directions for refining
design elements and interaction mechanisms
Input from (#22); input for (#24), (#25)

Natural
Text;
pictures,
videos

24 System
Vision
(DT&RE)

Specification of how an information system is to fit
into the business context while supporting pre-
defined restrictions and goals; it serves as a means for
agreeing on what the solution is about; while the
purpose of the system vision is similar to both DT and
RE, its realization might be different: in DT it is
usually comprised of a high-level natural text
specification and a medium-or high-fidelity
prototype (#20, #22), in RE the system vision is often
expressed via rich picture.
Input from (#03), (#04), (#05), (#06), (#22); input for
(#25), (#33), (#31)

rich
picture,
prototype,
natural
text

25 Usage Model
(DT&RE)

Illustration of the (black box) system behaviour of the
system vision (#24) from the user’s point of view
through an overview of use cases (incl. actor, task,
objective, and causal relationship); the model
provides an understanding about which system
functions are performed for which actors (in their
roles); while the purpose of the usage model is similar
to both DT and RE, its realization might be different.
Input from (#13), (#14), (#24), (#26); input for (#28),
(#29), (#33).

natural
text,
UML
activity
diagrams

49

26 Service
Model
(DT&RE)

Specification of requirements and objectives of the
intended services of the solution (i.e., user-visible
functions through input/output-relations); it provides
a comprehensive understanding of the services and
their underlying resources and processes, whether
seen or unseen by the user; while the purpose of the
usage model is like both DT and RE, its realization
might be different.
Input from (#24); input for (#25), (#29), (#33)

natural
text;
graphs

27 Process
Requirements
(RE)

Activities that should be performed by the
developing organisation (e.g., compliance to
standards and process models, project milestones,
style-guides, infrastructure); they provide the
guidelines for a consistent design and
implementation of the intended system
Input from (#01)

natural
text

28 Functional
Hierarchy
(RE)

Specification of functions and subfunctions and their
relationships and dependencies; functions are user-
visible pieces of the system behaviour that
correspond to services in (#26) and realize system
actions from (#25); bridges the requirements and
system specification and can be used as a guideline
for obtaining and organizing system requirements
Input for (#29), (#36), (#38), (#39)

graphs &
input-
output
tables

29 Data Model
(RE)

Summary of all data objects and relations that are part
of the system’s functions and interaction scenarios; it
supports the development of the intended system by
providing the definition, format, and structure of the
required data
Input from (#25), (#26), (#28); input for (#37)

UML
class
diagrams

30 Deployment
Requirements
(RE)

Description of demands for making the software
available for use, i.e. specifying the process of the
deployment and the technical infrastructure during
the initial release of the system or specific parts of
it; they contribute to the overall quality of the
resulting system
Input from (#01)

natural
text

31 Risk List
(RE)

Description of all risks that are related to project-
specific requirements and that potentially threaten
the development or operation of a system; risks are
typically analyzed along stakeholder interests and
estimated regarding their probability and potential
damage; the risk list provides the foundation to
introduce necessary countermeasures

natural
text

50

Input from (#24)

32 System
Constraints
(RE)

Logical and technical restrictions for the system
architecture, its functionality, and quality; they
provide the boundaries for development and
deployment
Input for (#38).

natural
text

33 Quality
Requirements
(RE)

Desired quality characteristics of a system beyond
functionality and features (e.g., reliability,
performance, security, usability, adaptability); they
are assessed by pre-defined measurements and help
to validate the successful completion of an entire
system or its respective functions and features
Input from (#11), (#13), (05#), (#24), (#25); input for
(#36), (#38).

natural
text

34 Glossary
(RE)

Extends the glossary of context-relevant terms (#09)
with requirements-specific terms; it will show up
again in the system specification (#40) as more terms
are added

natural
text

35 Architecture
Overview
(RE)

Aggregation of component overview (#38) and
functional hierarchy (#28); offers high-level
understanding of the evolving system’s architecture
and guides the definition of the more intricate
functional and operational architecture.
Input for (#36), (#38).

compone
nt
diagram

51

A.3 System Specification
A description of the content items of the system specification is provided in Table
7.

Table 7 Content Items in the System Specification

Name Description & Purpose Notation

36 Function
Model
(RE)

Overview diagram of the user-observable functions
and their communication relationships; the model
ensures an overview of all functions and processes
and, thus, assists in determining the scope for
implementation and the product and service costs
Input from (#28), (#33), (#35), (#38); input for (#39)

graphs,
tables

37 Data Model
(RE)

Overview of the coarse-grained data objects and the
relations that are required for the executing the
system’s functions; the “data elements” of the data
model refine the “data objects” from the data model
(#29) in the requirements layer by using a particular
data type; it is part of a stepwise completion from
moving the focus on defining user-visible functions
towards specifying the design system
Input from (#29); input for (#39)

UML
class
diagrams

38 Component
Model
(RE)

Description of the components (i.e., building blocks)
of a system’s services and their respective channels
and interfaces (e.g., application components, system
software components, technical components,
hardware components); the model bridges the
requirements layer with the system layer by defining
the main design principles and overall structure of the
system
Input from (#32), (#33), (#35); input for (#36), (#39)

compone
nt
diagrams

39 Behaviour
Model
(RE)

Description of the internal behaviour of a system with
the goal to execute the defined functionalities; the
model depicts a dynamic view of the system
behaviour and illustrates how objects or system
components interact to support use cases
Input from (#25), (#36), (#38); input for (#37)

Inter-
action
diagrams,
behaviour
al state
machines

40 Glossary
(RE)

Extends the previously defined glossary artifacts (#09,
#34) with technical relevant terms.

natural
text

52

Literature

Beyhl, T. and Giese, H. 2016. “Connecting Designing and Engineering Activities III,” in
Design Thinking Research, Understanding Innovation, H. Plattner, C. Meinel, and L. Leifer
(eds), Cham: Springer-Verlag, pp. 265-290.

Brenner, W., Uebernickel, F., and Abrell, T. 2016. “Design Thinking as Mindset, Process,
and Toolbox,” in Design Thinking for Innovation: Research and Practice, W. Brenner and
F. Uebernickel (eds), Cham: Springer International Publishing Switzerland, pp. 3-21.

Brown, T. 2008. “Design Thinking,” Harvard Business Review (86:6), pp. 84-92.

Brown, T. 2009. Change by Design, How Design Thinking Transforms Organisations and
Inspires Innovation, New York: HarperBusiness.

Brown, T. 2012. Design Thinking Defined. (https://designthinking.ideo.com/, accessed 12
January 2021).

Broy, M. 2006. “Requirements Engineering as a Key to Holistic Software Quality,” in
Proceedings of the 21th International Symposium on Computer and Information Sciences,
pp. 24-34.

Buchanan, R. 1992. “Wicked Problems in Design thinking,” Design Issues (8:2), pp. 5-21.

Dobrigkeit, F., de Paula, D., and Uflacker, M. 2018. “InnoDev - A Software Development
Methodology Integrating Design Thinking, Scrum and Lean Startup,” in Design Thinking –
Research Looking Further: Design Thinking Beyond Solution-Fixation, H. Plattner, C.
Meinel, L. Leifer (eds), Cham: Springer-Verlag, pp. 199-228.

Dobrigkeit F. and de Paula, D. 2019. “Design Thinking in Practice: Understanding
Manifestations of Design Thinking in Software Engineering,” in Proceedings of the 27th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’19), Tallinn, Estonia: ACM, pp. 1059-
1069.

Doorley, S., Holcomb, S., Klebahn, P., Segovia, K., and Utley, J. 2018. Design Thinking
Bootleg, d.school at Stanford University, CA.

Emam, K. E., and Koru, A. G. 2008. “A Replicated Survey of IT Software Project
Failures,” IEEE Software (25:5), pp. 84-90.

Forrester 2018. “The Total Economic Impact™ Of IBM’s Design Thinking Practice. How
IBM Drives Client Value and Measurable Outcomes with its Design Thinking Framework”
A Forrester Total Economic Impact™ Study, commissioned by IBM.

Fraser, H. 2011. “Business Design: Becoming a Bilateral Thinker,” Rotman Magazine,
Winter, pp. 70-76.

53

Gutzwiller, T. 1994. Das CC RIM-Referenzmodell für den Entwurf von betrieblichen,
transaktionsorientierten Informationssystemen. Heidelberg: Physica.

Häger, F., Kowark, T., Krüger, J., Vetterli, C., Übernickel, F., Uflacker, M. 2015.
“DT@Scrum: Integrating Design Thinking with Software Development Processes,” in
Design Thinking Research: Understanding Innovation, H. Plattner, C. Meinel, L. Leifer
(eds), Cham: Springer-Verlag, pp. 263-289.

Harte, R., Glynn, L., Rodríguez-Molinero, A., Baker, P. M., Scharf, T., Quinlan, L. R., and
ÓLaighin, G. 2017. “A Human-Centered Design Methodology to Enhance the Usability,
Human Factors, and User Experience of Connected Health Systems,” JMIR Human Factors
(4:1), e8.

Hehn, J. 2020. „The Use of Design Thinking for a Human-centered Requirements
Engineering Approach,” Dissertation, University of St.Gallen, Baier Druck, Heidelberg.

Hehn, J., Mendez, D., Uebernickel, F., Brenner, W., and Broy, M. 2020. “On Integrating
Design Thinking for a Human-centered Requirements Engineering,” IEEE Software,
Special Issue Design Thinking, pp. 25-31.

Hehn, J. and Uebernickel, F. 2018. “The Use of Design Thinking for Requirements
Engineering – An Ongoing Case Study in the Field of Innovative Software-Intensive
Systems,” in Proceedings of the 26th IEEE International Requirements Engineering
Conference (RE'18), Banff, Canada: IEEE.

Hehn, J., Uebernickel, F., Stöckli, E., and Brenner, W. 2018. “Towards Designing Human-
Centered Information Systems: Challenges in Specifying Requirements in Design Thinking
Projects,” in Proceedings of the Multikonferenz Wirtschaftsinformatik (MKWI 2018),
Lüneburg, Germany: AIS.

Hehn, J., Uebernickel, F., and Herterich, M. 2018. “Design Thinking Methods for Service
Innovation – A Delphi Study,” in Proceedings of the 22nd Pacific Asia Conference on
Information Systems (PACIS 2018), Yokohama, Japan: AIS.

IDEO.org. 2015. Field Guide to Human Centered Design.
(http://www.designkit.org/resources/1, accessed 3 January 2019).

Inayat, I., Salim, S. S., Marczak, S., Daneva, M., and Shamshirband, S. 2015. “A
Systematic Literature Review on Agile Requirements Engineering Practices and
Challenges,” Computers in Human Behavior (51), pp. 915-929.

Jönsson, P. and Lindvall, M. 2005. “Impact Analysis,” in Engineering and Managing
Software Requirements, A. Aurum and C. Wohlin (eds), Springer-Verlag Berlin Heidelberg
2005, pp. 117-142.

Kolko, J. 2015. “Design Thinking Comes of Age,” Harvard Business Review (93:9), pp.
67-71.

54

Kröper, M., Lindberg, T., Meinel, C. 2010. “Interrelations between Motivation, Creativity
and Emotions in Design Thinking Processes – An Empirical Study Based on Regulatory
Focus Theory”, Proceedings of the 1st International Conference on Design Creativity,
Kobe, pp. 97-104.

Lauenroth, K. 2018. “Digital Design Manifesto: A Self-confident Design Profession is the
Key to Successful and Sustainable Digitalization, Berlin: Bitkom,
(https://www.digitaldesign.org/content/1-home/digital-design-manifesto.pdf, accessed 8
November 2019).

Lindberg, T., Köppen, E., Rauth, I., and Meinel, C. 2012. “On the Perception, Adoption
and Implementation of Design Thinking in the IT Industry,” Design Thinking Research, H.
Plattner, C. Meinel, L. Leifer (eds), Cham: Springer-Verlag, pp. 229-240.

Martin, R. 2009. The Design of Business. Why Design Thinking is the Next Competitive
Advantage, Boston: Harvard Business Review Press.

Maguire, M. and Bevan, N. 2002. “User Requirements Analysis,” in: Usability, J.
Hammond, T. Gross, J. Wesson, (eds), Springer, Boston, MA, pp. 133-148.

ME 310. 2010. ME310 Design Innovation at Stanford University. Micro Cycle.
https://web.stanford.edu/group/me310/me310_2016/, accessed January 13, 2019.

Mendez Fernandez, D., Böhm, W., Vogelsang, A., Mund, J., Broy, M., Kuhrmann, M.,
Weyer. T. Artefacts in Software Engineering: A Fundamental Positioning. In: International
Journal on Software and Systems Modeling, 2019.

Mendez Fernandez, D. and Penzenstadler, B. 2014. “Artefact-based Requirements
Engineering: The AMDiRE Approach,” In: Requirements Engineering Journal (20:4), pp.
405-434.

Mendez Fernandez, D. and Wagner, S. 2014. “Naming the Pain in Requirements
Engineering: A Design for a Global Family of Surveys and First Results from Germany,”
Information and Software Technology (57), pp. 616-643.

Mendez Fernandez, D., Wagner, S., Kalinowski, M., Schekelmann, Tuzcu, A., Conte, T.,
Spinola, R., Prikladnicki, R. 2015 “Naming the Pain in Requirements Engineering:
Comparing Practices in Brazil and Germany” in IEEE Software Voice of Evidence (32:5),
pp. 16-23.

Mendez Fernandez, D., Wagner, S., Kalinowski, M., Felderer, M., Mafra, P., Vetrò, A.,
Conte, T., Christiansson, M.-T., Greer, D., Lassenius, C., Männistö, T., Nayebi, M., Oivo,
M., Penzenstadler, B., Pfahl, D., Prikladnicki, R., Ruhe, G., Schekelmann, A., Sen, S.,
Spinola, R., de la Vara, J.L., Tuzcu, A., Wieringa, R. 2016 “Naming the Pain in
Requirements Engineering: Contemporary Problems, Causes, and Effects in Practice,”
Empirical Software Engineering Journal, Springer.

Mendez Fernandez, D., Wagner, S., Lochmann, K., Baumann, A., de Carne, H. 2012 “Field
Study on Requirements Engineering: Investigation of Artefacts, Project Parameters, and
Execution Strategies”. In: Information and Software Technology, (54:2), pp. 162-178.

55

Newman, P., Ferrario, M.A., Simm, W., Forshawz, S., Friday, A., Whittle, J. 2015. “The
Role of Design Thinking and Physical Prototyping in Social Software Engineering,”
Proceedings of the 37th International Conference on Software Engineering, Florence, Italy,
(2), pp. 487-496.

Przybilla, L., Schreieck, M., Klinker, K., Pflügler, C., Wiesche, M., and Krcmar, H., 2018.
“Combining Design Thinking and Agile Development to Master Highly Innovative IT-
Projects,” in Projektmanagement und Vorgehensmodelle 2018 – Der Einfluss der
Digitalisierung auf Projektmanagementmethoden und Entwicklungsprozesse, M. Mikuzs,
A. Volland, M. Engstler, E. Hanser, and O. Linssen, (eds), Bonn: Gesellschaft für
Informatik, pp. 113-124.

Robertson, S. and Robertson, J. 2013. Mastering the Requirements Process: Getting
Requirements Right, Pearson Education Inc.

Schmiedgen, J., Rhinow, H., Köppen, E., and Meinel, C. 2015. “Parts Without a Whole? –
The Current State of Design Thinking Practice in Organisations,” Technische Berichte des
Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam, Study
Report No. 97.

Schön, D.A. 1984. The Reflective Practitioner: How Professionals Think in Action, New
York: Basic Books.

Uebernickel, F., Brenner, W., Naef, T., Pukall, B., and Schindlholzer, B. 2015. Design
Thinking: Das Handbuch, Frankfurt: Frankfurter Allgemeine Buch.

Vetterli, C., Brenner, W., Uebernickel, F., Petrie, C. 2013. “From Palaces to Yurts: Why
Requirements Engineering Needs Design Thinking,” IEEE Internet Computing (17:2), pp.
91-94.

Wagner, S., Méndez Fernández, D., Kalinowski, M., Felderer, M., Mafra, P., Vetrò, A.,
Conte, T., Christiansson, M.-T., Greer, D., Lassenius, C., Männistö, T., Nayebi, M., Oivo,
M., Penzenstadler, B., Pfahl, D., Prikladnicki, R., Ruhe, G., Schekelmann, A., Sen, S.,
Spinola, R., de la Vara, J.L., Tuzcu, A., Wieringa, R., and Winkler, D. 2019 “Status Quo in
Requirements Engineering: A Theory and a Global Family of Surveys,” Transactions on
Software Engineering and Methodology.

Yoo, Y. 2017. “Design Thinking for IS Research,” MIS Quarterly (4:1), iii-xviii.

