
Breaking the Specification: PDF Certification
Simon Rohlmann

Ruhr University Bochum
simon.rohlmann@rub.de

Vladislav Mladenov
Ruhr University Bochum

vladislav.mladenov@rub.de

Christian Mainka
Ruhr University Bochum
christian.mainka@rub.de

Jörg Schwenk
Ruhr University Bochum
joerg.schwenk@rub.de

Abstract— The Portable Document Format (PDF) is the de-
facto standard for document exchange. The PDF specification
defines two different types of digital signatures to guarantee the
authenticity and integrity of documents: approval signatures and
certification signatures. Approval signatures testify one specific
state of the PDF document. Their security has been investigated at
CCS’19. Certification signatures are more powerful and flexible.
They cover more complex workflows, such as signing contracts
by multiple parties. To achieve this goal, users can make specific
changes to a signed document without invalidating the signature.

This paper presents the first comprehensive security evaluation
on certification signatures in PDFs. We describe two novel attack
classes – Evil Annotation and Sneaky Signature attacks which
abuse flaws in the current PDF specification. Both attack classes
allow an attacker to significantly alter a certified document’s
visible content without raising any warnings. Our practical
evaluation shows that an attacker could change the visible
content in 15 of 26 viewer applications by using Evil Annotation
attacks and in 8 applications using Sneaky Signature by using
PDF specification compliant exploits. We improved both attacks’
stealthiness with applications’ implementation issues and found
only two applications secure to all attacks. On top, we show how
to gain high privileged JavaScript execution in Adobe.

We responsibly disclosed these issues and supported the
vendors to fix the vulnerabilities. We also propose concrete
countermeasures and improvements to the current specification
to fix the issues.

I. INTRODUCTION

PDF signatures are a well-established protection mechanism
to guarantee the integrity, authenticity, and non-repudiation
of a PDF document. Introduced in 1999, PDF signatures
are used to protect important documents such as certification
documents, contracts, and invoices. According to Adobe, 250
billion PDF documents were opened by their applications in
2018. Among them, 8 billion were signed [1]. The legal basis
for digitally signed documents is provided in the European
Union (EU) by the eIDAS Regulation [2] and in the United
States of America (USA) for the Electronic Signatures in
Global and National Commerce Act (ESIGN) [3] and the
Uniform Electronic Transactions Act (UETA) [4].

Attacker

Certifier Victim

Contract
Transfer to:
Name: Honest Corp.
IBAN: US12 3456 7890
Amount: 100$

Contract
Transfer to:
Name: Honest Corp.
IBAN: US12 3456 7890
Amount: 100$

Contract
Transfer to:
Name: Evil Corp.
IBAN: US66 6666 6666
Amount: 100.000$

Contract
Transfer to:
Name: Evil Corp.
IBAN: US66 6666 6666
Amount: 100.000$

Figure 1. In an exemplary attack scenario, the certifier creates a certified
contract with sensitive information which cannot be exchanged. The certifier
allows specific changes to the PDF contract, for example, further signatures.
Using these permitted changes, the attacker can change the amount from $100
to $100,000 and display the IBAN of his own account. Based on the attacks
presented in this paper, the victim cannot detect the manipulation and thus
accepts the modified contract.

Different Types of PDF Signatures. The PDF specification
defines two types of digital signatures.1

1) Approval signatures testify a specific document state. The
specification allows the usage of multiple signatures on the
same document. Any other change on a signed document leads
to an invalidation of the approval signature or warnings in
most PDF viewers. Hereafter, we use the terms “signature”
and “signed document” for approval signatures.

2) Certification signatures provide a more powerful and
flexible mechanism to handle digitally signed documents.
During the document’s certification, the owner defines a list
of allowed modifications that do not invalidate the document’s
certification signature. These allowed modifications can be
a subset of the following actions: writing text to specific
form fields (even without signing the document), providing
annotations to the document, or adding approval signatures.
Since a certification signature sets permissions on the entire
document, only one certification signature is allowed within
a PDF document. This certification signature must also be
the first signature in the PDF. Hereafter, we use the terms
“certification” and “certified document” for certification
signatures.

Certification signatures in the wild. Companies and or-
ganizations can use certification signatures to protect ready-
made forms such as contracts, non-disclosure agreements, or

1Digital scans of handwritten signatures, if embedded as an image in a
PDF document, are called ’electronic signatures’. Since they do not protect
the integrity of the document, they are out of scope here.

access control documents against changes and, at the same
time, allow signatures in the shape of approval signatures
[5, 6, 7, 8]. For example, the United States Government Pub-
lishing Office (GPO), a US federal legislative authority, and the
Legislative Assembly of British Columbia use certified docu-
ments for official publications [9, 10, 11, 12]. The European
Telecommunications Standards Institute (ETSI) also specifies
the support of certified documents within the EU [13]. Beside
the PDF applications, there exist multiple commercial and
governmental online services capable of signing and certifying
PDF documents [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
Use Case: Certified Document. Suppose that two companies
have agreed on a contract but cannot meet in-person to sign it.
As shown in Figure 2, the text ì of the contract is converted
to PDF . Both companies want to guarantee that this text
is displayed unaltered to any party (e.g., a CEO, lawyer, or
judge), even outside the two companies. The CEOs of both
companies sign the PDF contract to make it legally binding,
but the sales departments of both companies should be allowed
to add some parameters (e.g., payment dates) and provide
explanations to their CEOs via annotations to the contract.

Company 1
(Certifier)

Company 2 Judge

 = (ì, �, �)

 = (ì, �, �, Ë, Ò) Ë

 = (í, �, �, Ë, Ò) é

Figure 2. PDF certification use case. The PDF consist of content ì (e.g.,
text, images, etc.), and forms �. The PDF is protected by a certification
signature � that prohibits text modifications (e.g., ì → í). Company 2 can
add annotations Ë, fill-out forms �, and apply a signature Ò. An independent
party (e.g., a judge) can verify whether the PDF is valid Ë or invalid é.

In the complete scenario, the CEO of company 1 uses a
certification � on the PDF document. This certification covers
the entries of their own sales department and allows for some
alterations after certifying. The sales department of company
2 should be able to enter data into some specified form fields
� which are displayed by the certified document. They should
also be allowed to make annotations and to add the signature
of the CEO of company 2. Company 2 then fills in the form
fields �, adds some annotations Ë and signs Ò the slightly
modified document. From this scenario, it should be clear that
company 2 must not be able to modify the original text of the
contract before or when signing, for example, by changing the
negotiated payment (ì → í). At the very least, all changes
made to the contract by company 2 should be visible to a
judge using any PDF viewer in a legal trial.

Unfortunately, this is not the case. In this paper, we present
attacks where the content of the PDF document can be altered
by company 2 in such a way that the changes are undetectable,
either in all PDF applications or in a subset of them.

Security of PDF Certification. We investigate the following
question: “How dangerous are permitted changes in certified

documents?”. To answer this question we systematically an-
alyze the allowed modifications in certified documents and
reveal two new vulnerabilities abusing flaws in the PDF
specification: Evil Annotation Attack (EAA) and Sneaky Sig-
nature Attack (SSA). These vulnerabilities allow an attacker to
change the visible content of a PDF document by displaying
malicious content over the certified content. Nevertheless,
the certification remains valid and the application shows no
warnings.
PDF Applications are Vulnerable. We evaluated 26 PDF
applications and were able to break the security of certified
documents in 15 applications by using the EAA. For the attack
class SSA, 8 applications proved to be vulnerable. In total,
24 applications were vulnerable to at least one specification
flaw. Additionally, we analyzed 26 applications to determine
whether the permissions for adding annotations and signatures,
as defined in the PDF specification, were implemented cor-
rectly. We show that for 11 of 26 applications, a permission
mismatch exists.
Code Injection Attack on Adobe. Only certified documents
may execute high privileged JavaScript code in Adobe prod-
ucts. For example, a high-level JavaScript can call an arbitrary
URL without user confirmation to deanonymize a user. Our
research reveals that such code is also executed if it is added
as an allowed incremental update. We are the first to reveal
that this behavior allows attackers to directly embed malicious
code into a certified document.
Responsible Disclosure. We started a coordinated vulner-
ability disclosure and reported all issues to the respecting
vendors. We cooperated with CERT-Bund (BSI) and provided
a dedicated vulnerability report including all exploits to them.
Adobe, Foxit, and LibreOffice responded quickly and provided
patches for late 2020 (CVE-2020-35931) or early 2021 (CVE-
2021-28545, CVE-2021-28546) see Appendix B. Adobe fixed
the code injection vulnerability in early Nov. 2020 within
a patch outside the regular update cycle (CVE-2020-24432).
Currently, we participate in the standardization process via
the German National Organization for Standardization (DIN)
and the International Organization for Standardization (ISO)
to address the reported attacks in the next PDF specification.
Contributions. The contributions in this paper can be sum-
marized as follows:

• We define an attacker model based on real-world usage of
certified documents. We are the first to consider the attack
success on three different PDF application UI Layers
(section III).

• We are the first to provide an in-depth security analysis
of certified documents by analyzing the 994-pages PDF
2.0 specification [25] (section IV).

• We discovered the EAA and SSA, two vulnerabilities
based on security gaps in the PDF specification. Both
allow modifying the displayed content arbitrarily in a
certified document (section V).

• We implemented two tools – PDF Tester and PDF De-
tector. PDF Tester is a tool to automatically evaluate

2

the security of multiple PDF applications for multiple
PDF files. PDF Detector is an online service evaluating
certified documents and recognizing the attacks described
in this paper. Both tools are described in section VI.

• We evaluate the security of certified documents in 26
popular PDF applications on Windows, macOS, and
Linux. The results are alarming. In only 2 cases, we could
not find a vulnerability; 15 viewers were vulnerable to
EAA, 8 to SSA, including Adobe, Foxit, and LibreOffice.
We additionally analyzed the standard-compliant imple-
mentation of PDF certification applications and found
issues in 11 of them. Tools and exploits are available
on https://pdf-insecurity.org/.

• Since EAA and SSA abuse flaws in the current PDF
specification, we propose fixes for them (section VIII).

• We extend the impact of EAA and SSA by showing
how to use them for executing high privileged JavaScript
(section IX).

II. BASICS

A. PDF Structure

Figure 3 shows the file structure of a certified document.
The first four building blocks are: header, body, xref table,
and trailer. The header defines the version of the document,
for example %PDF-2.0 for version 2.0. The body defines the
content shown to the user after opening the file. The body
contains different objects with different types. Common types
are text, font, or image. There are dedicated objects that control
the presentation of the PDF, such as Catalog, Pages, and Page.
An example of an object is depicted in Listing 1.

1 1 0 obj % Object with ID "1"
2 /Type /Page % Definition of one page of the document
3 /Contents 2 0 R % Ref. to 2 0 obj defining the text
4 /Resources 3 0 R % Ref. to 3 0 obj defining the font
5 endobj % End of the object

Listing 1. Part of a PDF document depicting the definition of one objects –
the Page 1 0 obj.

The xref table contains the byte position of each object in the
PDF. It allows PDF viewers to efficiently find all objects for
processing. The trailer defines the byte position of the xref
table and the root object of the PDF document’s object tree.
The root object is named Catalog and it is the first object to be
processed, because it contains all relevant information about
the document’s structure.

B. Interactive Elements

The PDF specification additionally defines interactive ele-
ments that allow user input into the document. Such elements
are separated in two categories: forms and annotations.
Forms. PDF forms allow user input in a predefined mask, such
as a text field, a radio button, or a selection box. Facilities,
such as the administration, usually use forms to create PDF
documents with predefined areas which are intended to be
filled out by users. The user input is, however, limited to the
defined form fields and cannot change other content within the
PDF.

xref table
trailer

header
body

xref table
trailer

Certification

P1 / P2 / P3

xref table
trailer

Allowed

changes

O
ri

g
in

al
 P

D
F

R
a
n
g
e
 p

ro
te

ct
ed

 b
y
 c

er
ti

fi
c
at

io
n

In
c.

 U
p
d
a
te

 1
:

C
e
rt

if
ic

at
io

n

In
c.

 U
p
d
a
te

 2
:

C
h

an
g

es

(a) Structural view of a certi-
fied document.

xref table
trailer

header
body

xref table
trailer

Certification

P1 / P2 / P3

xref table
trailer

Allowed

changes

O
ri

g
in

al
 P

D
F

R
a
n
g
e
 p

ro
te

ct
ed

 b
y
 c

er
ti

fi
c
at

io
n

In
c.

 U
p
d
a
te

 1
:

C
e
rt

if
ic

at
io

n

In
c.

 U
p
d
a
te

 2
:

C
h

an
g

es

(b) Certified document within an applica-
tion.

Figure 3. An example of a certified document with allowed changes is shown
here by highlighting the text “All partners” after certification. The figure is
divided into the structure (a) and actual view (b). Original PDF depicts the
PDF document before it is certified. Inc. Update 1 presents the PDF document
after applying a certification. Inc. Update 2 shows changes on the document
made after its signing and appended at the end of the file.

Annotations. Annotations introduce a different method for
a user input by allowing a user to put remarks in a PDF
document like text highlighting, strikeouts, or sticky notes.
Annotations are not limited to predefined places within the
PDF and can be applied everywhere within the document.

C. Incremental Update

An Incremental Update introduces a possibility to extend
a PDF by appending new information at the end of the file,
see Inc. Update 1 in Figure 3(a). In this way, the original
document stays unmodified and a revision history of all
document changes is kept. Each Incremental Update defines
new objects, a new xref table, and a new trailer. An example
of an Incremental Update is the inclusion of an certification,
signature, annotation, or the filling out forms within a PDF.

D. Integrity Protection of PDFs

Signed Documents. By signing a PDF document, a Signature
object is created. This object contains the trusted public
keys to verify the document, the signature value, the range
of bytes that are protected by the signature, and a user-
friendly information regarding the signer of the document. The
Signature object is usually added to the PDF document by
using an Incremental Update.
Certified Documents. Certifications have two main differ-
ences to signatures. First, each PDF can have only one
certification and must be the first in the document. Second,
certifications define permissions that allow certain changes to
the certified document. Signatures have been investigated
in previous work (cf., section XI). This paper focuses on
certified documents, which have not yet been analyzed. As
depicted in Table I, certifications define a more flexible way to
handle Incremental Updates, and allowed Incremental Update
do not lead to a warning. The certifier chooses between three
different permission levels (P) to allow different modifications.
P1: No modifications on the document are allowed.

3

https://pdf-insecurity.org/

Incremental Update Signature Certification
Prev. work [26] This paper

P1 P2 P3
Add/change visible content − − − −
Fill out form inputs Þ − Z Z
Multiple signatures Z − Z Z
Add/change annotations � − − Z

− Modification not allowed
Z Modification allowed
Þ Only allowed when adding a signature at the same time
� Leads to warnings in most PDF applications

Table I
COMPARISON OF SIGNATURES AND CERTIFICATIONS IN A PDF.

P2: Filling out forms, and digitally signing the document
are allowed.

P3: In addition to P2, annotations are also allowed.
The allowed modifications are defined within the DocMDP
Transformation parameter contained in the certification object.
With respect to the integrity protection of the PDF, the PDF
application must execute the following steps. First, it must
verify if an Incremental Update was applied after the PDF
was certified. Second, it must verify if the defined changes
are legitimate according to the given permissions.

III. ATTACKER MODEL

The goal of our attacks is to change the view on the certified
document, and to block warnings on these changes. Therefore,
successful attacks must be defined in the context of the PDF
viewer’s User Interface (UI).

A. UI Layer

The UI in many PDF viewing applications can be divided
into three layers that are important for the verification of the
certification.
UI-Layer 1: Top Bar Validation Status. UI-Layer 1 is usu-
ally displayed immediately after opening. Typical applications
use a clearly visible bar on top of the PDF content. The status
of the certification and signatures validation is provided as a
text (e.g., valid/invalid), often combined with green, blue or
red background colors, cf. Figures 3, 5, and 6.
UI-Layer 2: Detailed Validation and Information. UI-Layer
2 provides detailed information about the certification and the
signatures applied to the PDF. It can be implemented by the
viewer in numerous ways, but viewers typically do not show
this information automatically once the PDF file is opened.
Instead, it must be opened manually by clicking a certain
button. For example, this button can be placed on the top-
bar (UI-Layer 1). Some viewers use sidebars which provide
detailed information regarding the certified document, other
use pop-up windows.
UI-Layer 3: PDF Annotations. UI-Layer 3 is another UI
element that shows all PDF annotations. Typically, a sidebar
is used for this purpose. This layer is of particular importance
for certified documents, since with level P3, adding and
changing PDF annotations is allowed. Without this layer, some

annotations (e.g., text blocks) would be indistinguishable from
regular PDF text content.

B. Entities

Attacker Certifier
(pkc, skc)

Victim
pkc

(1) PDFcert

PDFcert,atk :=
manipulate(PDFcert)

(2) PDFcert,atk

vrfy(PDFcert,atk, pkc)(3) result

Figure 4. Attacker Model. The attacker is allowed to manipulate the certified
document (i) after its certification. and the victim then verifies it.

The attacker model defines multiple entities that are in-
volved during the process of creating a certified document
(cf. section III). We assume that private keys remain private,
and that public keys are known to all other involved parties.
Certifier. The certifier is the entity who initially protects the
content of the PDF. The certifier sets the level of permissions
(i.e., P1,P2,P3) and certifies the PDF document.
Victim. The victim can be any person, group, or service that
trusts the public keys used by the certifier. The victim uses a
PDF viewer application to display the PDF document.
Attacker. The attacker manipulates a given PDF document
in order to change its visible content. The attacker is al-
lowed to modify arbitrary parts of the PDF. Arbitrary in
this context means that the attacker is not bound to the
allowed modifications defined in the certified document. For
example, the attacker can technically add annotations to a
P1 certified document by manually editing the file without
a viewer application. The goal of the attacker is to prevent the
victim’s detection of these manipulations.

C. Success Conditions

The first success condition is that the PDF application
displays the manipulated content. Second, we differentiate the
success of the attack in dependence of the UI Layers. On
each UI Layer, the application can be vulnerable , limited
vulnerability G#, or secure #. In the following paragraph, we
summarize the success conditions for each UI Layer.
UI-Layer 1.
 Vulnerable: To be classified as vulnerable, UI-Layer 1

must display that the signature valid.
G# Limited Vulnerability: If in addition to the valid signature

status, generic information regarding PDF changes is
show, we classify the attack as partially vulnerable.

Secure: If UI-Layer 1 shows that the signature is invalid,
we classify the application as secure.

UI-Layer 2.
 Vulnerable: All signatures shown in UI-Layer 2 must be

valid to evaluate the PDF application vulnerable.
G# Limited Vulnerability: If UI-Layer 2 displays hints about

allowed modifications (e.g., “An annotation has been
added, but this is allowed.”), then the PDF application
is partially vulnerable.

4

Secure: If UI-Layer 2 shows a warning or an error with
respect to the signature validation, the PDF viewer is
secure #.

UI-Layer 3.
 Vulnerable: The attacker’s annotations that change the

visible content must not be shown in UI-Layer 3 to
evaluate the PDF application as vulnerable.

G# Limited Vulnerability: If the application does not provide
any possibility of listing annotations in a dedicated panel,
that is UI-Layer 3, we classify the application as partially
vulnerable.

Secure: If the attacker’s annotations are visible in UI-
Layer 3, we evaluate the PDF application as secure.

A perfect attack would be successful on all three layers.
We argue that if a victim does not validate all UI Layers, an
attack on UI-Layer 1 or on UI Layers 1+2 might be sufficient.
This assumption especially holds, because only UI-Layer 1 is
automatically shown on opening the certified document. The
victim must open and inspect other layers manually. Note that
the victim can open UI-Layer 2 and UI-Layer 3 independently.
With respect to the used application, this opening can involve
multiple clicks in nested sub-menus.

Comparison to Previous Work. We used the attacker model
introduced by Mladenov et al. [26] for approval signatures
as a foundation. For certified documents, we extended the
success conditions to consider PDF annotations in two ways.
First, they can be recognized in UI-Layer 2 as indicated by
the status limited vulnerability G#. Second, a PDF viewing
application displays PDF annotations in a dedicated user
interface. Previous work [26] did not consider UI-Layer 3.

IV. METHODOLOGY

A. Manual Specification Analysis

During our research, we carefully analyzed which changes
are allowed and which are permitted. We then concentrated
on the allowed changes and investigated their capabilities and
how these can be used for attacks. The results are depicted in
Table II and Table III.

Allowed and Prohibited Changes. At the beginning of our
analysis, we investigated which modifications can be included
or removed within certified documents with respect to the
defined modification permissions (i.e., P1, P2, and P3, cf.,
section VII). Without any surprises, annotations are allowed
only in certified documents with P3 and form modifications –
in P2 and P3. We determined three different categories with
respect to possible changes on the document.

• Changing Static Content: Independent of the defined
permissions (P1, P2, P3), the static text content cannot
be changed. This restriction includes changes such as
adding/removing/switching pages, replacing fonts, and
replacing the text or images within a page.

• Changing Forms: We wondered which changes on forms
are allowed if the permission is set to P2 or P3. Ac-
cording to the specification, it is only allowed to modify

the value of the form field. The modification of its
appearance, for example, its position, color, and font,
must not be allowed. Forms can also be used to insert
digital signatures.

• Adding/Removing/Modifying Annotations: Annotations
can be added if the permission is set to P3. According
to the specification, there is no restriction on the type of
annotation. In contrast to the specification, our analysis
reveals that not all annotations are allowed (cf. Table II).

Capabilities of Allowed Changes. As a next step, we an-
alyzed the capabilities of the allowed modifications. This
process was the most time-consuming part of the evaluation
since all features for each annotation and each form were
analyzed. We identified four different categories:

• Add/Hide Text: These modifications are able to change
the visible text content. Configurations such as font style,
font size, position within the PDF document can be also
specified. We argue that such modifications can insert new
text content or overlay existing one.

• Add/Hide Graphic: Modifications belonging to this cat-
egory are able to change the visualization of content by
overlaying original graphics. These kind of modifications
allow to either use images for displaying text or even to
change graphics in the document.

• Field Value: With respect to forms, only modifications
within the form in a predefined input mask are allowed.

Danger Level. We estimated the danger level for each modifi-
cation and define four levels: High, Medium, Low, and None.

• High: The highest level results from the fact that the
modification allows the insertion of text indistinguishable
from the original one. Thus, a user opening a document
cannot detect the inserted annotation and interprets the
newly added content as part of the certified document.

• Medium: The level Medium covers modifications capable
of hiding content. The user is then unable to detect that
the modifications overlay some part of the document, for
example, an important point of a contract.

• Low: Annotations with the level Low are potentially able
to hide content of the original PDF, but the modification
is visible for the user. For such modifications we abuse
features like annotation icons shown in the PDF. Since the
icon can be exchanged, one can define an icon overlaying
content. Nevertheless, we could not find a way to change
the icon without invalidating the certification. A residual
risk remains, but we consider this to be low.

• None: All modifications which are not allowed to be used
in certified documents have the level None.

B. Manual vs. Automated Approach

At the beginning of our research, we raised the question
if the analysis of the PDF specification, which has more
than 990 pages, can be automated. One possibility to extract
security requirements from the documentation is to apply a
lexicographic analysis based on natural language processing
as described in [27, 28, 29, 30]. This approach can be applied

5

on API descriptions and similar guidelines since they define
concrete validation steps. Thus, requirements can be extracted
and evaluated. Unfortunately, this approach is not suitable to
analyze a specification and determine if an introduced feature
is potentially dangerous or not.
Error Guessing. We decided to apply an analyzing technique
known from software testing called “error guessing” [31].
This approach is dependent on the experience of the security
experts to guess a problematic part of the specification or the
application. The result of such an analysis is a list of possible
errors or dangerous features which need to be further analyzed.
Although this analysis highly depends on the expertise of the
analysts, it is often used to understand complex technologies
where security considerations are missing. Thus, novel security
issues can be discovered manually and in a second step can be
executed automatically. This is an established approach in the
security community [32, 33, 34, 35, 36, 37, 38, 26, 39, 40].
Semi-automated Test Case Generation. Once we created
a list of possible errors and test cases, we concentrated on
the creation process of the malicious PDFs. We decided to
apply a semi-automated approach by using different scripts to
create, sign, and modify a PDF document. A fully automated
approach is not necessary since the number of test cases is
manageable. Moreover, no variances of the test cases need to
be created. Thus, fuzzing techniques are also considered out
of scope.
Fully-automated Evaluation and Detection. In summary, we
created 45 test cases which needed to be evaluated on 26
applications. This process was automated since it is inefficient
to manually open 45 ·26 = 1170 PDF documents and evaluate
them. Following this approach, we are also able to test newer
or fixed versions of the applications. We also can detect
maliciously crafted PDFs with EAA and SSA automatically,
see subsection VIII-B.

V. BREAKING PDF CERTIFICATION

In this section, we present different attack techniques to
break the integrity protection of certified documents. We found
two specification flaws, which lead to security vulnerabilities
in most PDF applications that are compliant to the PDF
specification. The first one is the Evil Annotation Attack
(EAA) and it breaks the P3 permission (subsection V-A). The
second one is the Sneaky Signature Attack (SSA), breaking
the P2 permission (subsection V-A). In addition, we apply
obfuscation techniques through further implementation flaws,
which allow us to hide the attacks based on specification flaws
even better.

A. Evil Annotation Attack (Specification Flaw: Breaking P3)

The idea of the Evil Annotation Attack (EAA) is to show
arbitrary content in a certified document by abusing annota-
tions for this purpose. Since P3 certified document allow to
add annotations, EAA breaks the integrity of the certification.
Evaluating Permission P3. According to the specification,
the following changes in a certified document with P3 are

Annotation Capabilities Allowed in Danger
Text Image P1 P2 P3 Level

Add Hide Add Hide

FreeText Ë Ë é Ë − − Z High
Redact Ë Ë é é − − Z High
Stamp é Ë Ë Ë − − Z High

Caret é Ë é Ë − − Z Medium
Circle é Ë é Ë − − Z Medium
Highlight é Ë é Ë − − Z Medium
Ink é Ë é Ë − − Z Medium
Line é Ë é Ë − − Z Medium
Polygon é Ë é Ë − − Z Medium
PolyLine é Ë é Ë − − Z Medium
Square é Ë é Ë − − Z Medium
Squiggly é Ë é Ë − − Z Medium
StrikeOut é Ë é Ë − − Z Medium
Underline é Ë é Ë − − Z Medium

FileAttachment é Ë é Ë − − Z Low
Sound é Ë é Ë − − Z Low
Text(Sticky Note) é Ë é Ë − − Z Low

3D é Ë é Ë − − − None
Link é Ë é Ë − − − None
Movie é Ë é Ë − − − None
Popup é é é é − − Z None
PrinterMark é é é é − − − None
Projection é é é é − − − None
RichMedia é Ë é Ë − − − None
Screen é é é é − − − None
TrapNet é é é é − − − None
Watermark Ë Ë Ë Ë − − − None
Widget é é é é − − − None

Z Usage allowed − Usage not allowed
Table II

LIST OF ALL SPECIFIED PDFS ANNOTATIONS, CATEGORIZED
ACCORDING TO: 1) THEIR CAPABILITIES, 2) THEIR PERMISSION IN

CERTIFIED DOCUMENTS, AND 3) THE DANGER LEVEL WITH RESPECT
TO THEIR PERMISSION.

allowed: 1) adding/removing/modifying annotations, 2) filling-
out forms, 3) and signing the document. We started with
an in-depth analysis of all annotations and their features. We
evaluated 28 different annotations and classified these with
respect to their capabilities and danger level. The results are
depicted in Table II and will be further explained.

Danger Level of Annotations. We determined three annota-
tions with a danger level high capable to hide and add text
and images: FreeText, Redact, and Stamp. All three can
be used to stealthily modify a certified document and inject
malicious content. In addition, 11 out of 28 annotations are
classified as medium since an attacker can hide content within
the certified document. The danger level of the remaining
annotations is classified as low or none since such annotations
are either quite limited or not allowed in certified documents.

Attacking with Annotations. According to our attacker
model, the attacker possesses a validly certified document
allowing the insertion of annotations. To execute the attack,
the attacker modifies a certified document by including the
annotation with the malicious content at a position of attacker’s
choice. Then, the attacker sends the modified file to the victim
who verifies the digital signature. The victim could detect
the attack if it manually opens UI-Layer 3 or clicks on the

6

Remove /SubType value or set it to an unspecified one. Remove /SubType value or set it to an unspecified one. Add annotation to overwrite the price per share.Add annotation to overwrite the price per share.

Visible annot. Hidden annot.

Figure 5. A certified document. The Price per share was manipulated by a FreeText annotation to show the value $100,000,000. The PDF viewer displays
this annotation in UI-Layer 3. By deleting the /Subtype value the PDF object, it can be removed.

annotation. However, none of the tested PDF applications
opened UI-Layer 3 automatically. Additionally, the attacker
can lock an annotation to disable clicking on it.

Improving the stealthiness of EAA. To improve the attack,
we elaborated techniques to prevent the annotation’s visual-
ization, so that it does not appear in UI-Layer 3. Surprisingly,
we found a generic and simple bypass that can be applied
to all annotations. PDF viewers identify annotations by their
specified /Subtype. This /Subtype is also used by the
viewer to assign the various editing tools, such as a text editor
for FreeText comments. If the value of /Subtype is either
missing or set to an unspecified value, whereby both cases are
not prohibited according to the specification, the PDF viewer
is unable to assign the annotation. As depicted in Figure 5,
the annotation is not listed in UI-Layer 3. In summary, the
annotation is indistinguishable from the original content.

Special Modifications. For some annotations, such as
FreeText or Stamp, the editing tools of appropriate PDF
applications can be easily used to completely design the visible
content of a certified document. This is not the case for other
annotations, which are classified as suitable for hiding text
and images. The Underline annotation, for example, only
creates a small line below the selected text. For hiding the text
that is located below this line, the PDF object must be man-
ually edited. By using a text editor, the thickness of the line
can be adjusted within the annotation’s appearance (parameter:
/N) to hide the whole text. It is also possible to define the
coordinates of an annotation to hide a particular area on a page.
A special feature among the annotations is Redact. It allows
new text to be placed over existing text. If the user moves
the mouse over the text, the new text is displayed and hides
the original text. To display this new text permanently, it is
sufficient to redirect the object number (parameter: /N) to the
object with the new text. Summarized, the specification does
not restrict the size, color or characteristics of annotations and
offers arbitrary possibilities to change the displayed content.

B. Sneaky Signature Attack (Specification Flaw: Breaking P2)

The idea of the Sneaky Signature Attack is to manipulate
the appearance of arbitrary content within the PDF by adding
overlaying signature elements to a PDF document that is
certified at level P2.

Evaluating Permission P2. According to the specification,
the following changes in a certified document with P2 are
allowed: filling-out forms, and signing the document. We
started the analysis of forms as depicted in Table III and
evaluated their capabilities.

Form 1) Capabilities 2) Allowed in 3) Danger
Text Graphic Form P1 P2 P3 Level

Add Hide Add Hide

Signature Ë Ë Ë Ë é − Z Z High

Text Field é é é é Ë − Z Z None
Button Field é é é é Ë − Z Z None
Choice Field é é é é Ë − Z Z None

Z Usage allowed − Usage not allowed
Table III

A LIST OF ALL SPECIFIED PDFS FORMS. WE CATEGORIZED THEM BY
1) THEIR CAPABILITIES, 2) THEIR PERMISSION IN CERTIFIED

DOCUMENTS, AND 3) THE DANGER LEVEL WITH RESPECT TO THEIR
PERMISSION. ONE FORM IS CLASSIFIED AS HIGHLY DANGEROUS SINCE

TEXT AND GRAPHICS CAN BE HIDDEN OR ADDED VIA IT.

Danger Level of Forms. According to our analysis, the danger
level was none because the insertion of new form elements,
customizing the font size and appearance, and removing form
elements is prohibited. The only permitted change is on the
value stored in the field. Thus, an attacker is not able to create
forms which hide arbitrary content within the PDF document.
Surprisingly, these restrictions are not valid for the signature
field. By inserting a signature field, the signer can define the
exact position of the field, and additionally its appearance and
content. This flexibility is necessary since each new signature
could contain the signer’s information. The information can
be a graphic, a text, or a combination of both. Nevertheless,
the attacker can misuse the flexibility to stealthy manipulate
the document and insert new content.

Attacking with Forms: SSA. The attacker modifies a certified
document by including a signature field with the malicious
content at a position of attacker’s choice. The attacker then
needs to sign the document, but he does not need to possess
a trusted key. A self-signed certificate for SSA is sufficient.
The only restriction is that the attacker needs to sign the
document to insert the malicious signature field. This signing
information can be seen by opening the PDF document and
showing detailed information of the signature validation. In

7

R
em

o
v

e
 sig

n
e
r in

fo
r
m

a
tio

n
 fr

o
m

 sig
n

a
tu

r
e
 o

b
je

c
t.

R
em

o
v

e
 sig

n
e
r in

fo
r
m

a
tio

n
 fr

o
m

 sig
n

a
tu

r
e
 o

b
je

c
t.

A
d

d
 sig

n
a

tu
r
e to

 o
v

e
rw

r
ite

 th
e p

r
ice

 p
e
r sh

a
r
e.

A
d

d
 sig

n
a

tu
r
e to

 o
v

e
rw

r
ite

 th
e p

r
ice

 p
e
r sh

a
r
e.

Figure 6. A certified document. The Price per share was manipulated using
a sneaky signature which overwrites the price with $100,000,000. The PDF
viewer displays this signature in UI-Layer 2. By manipulating the signature
object, the signer information can be removed.

this case, the victim opening the file can get suspicious and
refuse to accept the document, even though the certification is
valid.

Improving the Stealthiness of SSA. To circumvent this
limitation, we found a bypass to hide this information in UI-
Layer 2. Thus, the victim is not able to determine the attacker’s
manipulations (see Figure 6). Basically, we have three tasks to
improve the attack execution: 1) hide the signature information
in the signature panel on UI-Layer 2 , 2) skip the validation of
attacker’s signature, and 3) make the signature field read-only
to make it indistinguishable from the text content. To solve
all tasks, we need to adjust one object – the one responsible
for the appearance of the signature. It contains three relevant
parameters: /P, /V, and /Ff. The /P is a reference to the
page where signature should be displayed. We found out
that if this reference is not valid, the signature disappears
from the signature panel on UI-Layer 2, but the malicious
content is still shown on the page. A signature added to a
PDF document is usually verified by processing its referenced
signature data. If the stored cryptographic values are correct
and the document is not manipulated within the signed area,
the signature is technically valid. The /V parameter references
the signature value which needs to be validated. We found out
that if this reference is also invalid, the signature validation
is skipped. Finally, we set the parameter /Ff to 1 which
means that the content is read-only. If a certified document is
opened in a common PDF application, signatures can only be
added to free signature fields provided by the certifier. Adding

empty signature fields is normally no longer possible within
the application. However, the specification does not prohibit
adding empty signature fields to a certified document. By using
frameworks like Apache PDFBox2, empty signature fields can
be placed anywhere in the document and filled with arbitrary
content.

C. Limitations of EAA and SSA

Both attacks can be detected by searching for a specific text
which is hidden behind the annotation or the signature. The
editor signals that a searched term is found but the user is
unable to see it. Another limitation could occur dependent
of the UI Layer. In the default configuration, most PDF
applications do not show the applied annotations on UI-Layer
1. The evil annotations are also not shown on UI-Layer 2.
Nevertheless, it should be mentioned that the UI Layer of some
PDF applications can be configured to show all UI Layers after
opening a PDF document.

D. It’s Not a Bug, It’s a Feature

We classified EAA and SSA as vulnerabilities in the PDF
specification. Considering the fact that the person certifying
the document could know that additional signatures and anno-
tations might be added to the document, the risks caused by
these attacks should be known and accepted by all involved
entities. However, our attacks reveal that signatures and anno-
tations can 1) be customized to appear as a normal text/images
above the signed content, 2) they can be indistinguishable from
the original content, and 3) their indications can be hidden
from UI Layers. Only 3) requires application implementation
issues. Studying the PDF specification and guidelines regard-
ing the validation of certified documents, we did not find
any security considerations mentioning the potential risks and
summarizing the best practices. This leads to the assumption
that the risks mentioned in this paper have been overlooked
and need to be addressed on specification and implementation
level.

E. Permission Mismatch

Besides the specification, PDF applications can also im-
plement the basic verification of the permissions of certified
documents wrongly. These issues enable prohibited changes.
We determine two permission mismatches according to the
allowed changes described in Table I:

• The adding of annotations and signatures is allowed
regardless of the permission level P1 / P2.

• Annotations are allowed to be added starting at permis-
sion level P2.

Faulty Permission Verification. As already described, the
EAA and SSA attack classes require certain permission levels
with regard to document certification. However, this restriction
requires the correct implementation of the permission levels
within the individual PDF implementations. If an application
does not check the set permissions P1 and P2 at all, or not

2https://pdfbox.apache.org/

8

 https://pdfbox.apache.org/

completely, the attack classes can be successfully executed
even at lower permission levels. Editing functions within the
PDF applications can be easily outsmarted, for example, to add
annotations to PDFs with permission levels lower than P3. For
this purpose, it is sufficient to manually adjust the permission
level P1 or P2 of a certified document to P3 using a text
editor. Of course, this initially breaks the certification, since
this corresponds to a change in the signed area. However, the
invalid certification state is, in practice, no reason for the PDF
application to prevent functions such as adding annotations
or signatures. Now that an annotation has been added to the
document, the permission level can be manually reset to the
original value P1 or P2. The signed area now corresponds
to the initial state again and the certification is valid from a
cryptographic point of view. The annotation is now outside the
signed area within an Incremental Update. If a PDF application
does not check when opening the PDF whether the attached
Incremental Updates are allowed within the initial permission
level, the execution of the attack classes EAA and SSA on a
lower permission level is possible.

VI. METHODOLOGY: AUTOMATIC VIEWER ANALYSIS
WITH PDF TESTER

During our research, we created 45 attack vectors in certified
documents. Each vector must be tested on each of the 26
viewer applications using the black box analysis method. The
sheer number of resulting test cases clearly indicated, that a
fully automated evaluation system is inevitable. To automate
the creation and evaluation process, we developed the analysis
tool PDF Tester. PDF Tester’s workflow is depicted in Ap-
pendix C. PDF Tester’s functionality can be divided into two
tasks: (1) the creation of the application’s screenshot, including
the certification validation status and (2) the evaluation of the
attack vector according to the screenshot’s validation status.
We implemented two approaches for this purpose: a pixel-
based and a text recognition approach.

Screenshot Creation. The screenshot creation is used to doc-
ument manipulation effects in the individual PDF application.
The user enters the paths to the PDF files and PDF applications
in PDF Tester. PDF Tester automates the opening of PDF
documents in different PDF applications and automatically
takes a screenshot that includes UI-Layer 1.

Screenshot Evaluation: Pixel-based. The screenshot eval-
uation compares all created screenshots on a pixel level.
It needs a reference image (i.e., the ground truth) of the
unmanipulated PDF document. The PDF Tester estimates the
difference between the exploit screenshots and the reference.
If the difference is close to zero, the tested PDF has a valid
certification and thus, the manipulations did not invalidate
the certification. The pixel-base approach is very fast, but it
requires a uniform image template and offers no flexibility
in the form and design of the content. All screenshots must
have the exact same resolution. Offsets, for example, due to
a window movement, or opening of sub-menus, are causing
issues.

Screenshot Evaluation: Text-based. To analyze screenshots
that do not have the properties for a direct pixel comparison,
we implemented text recognition. For this purpose, we use the
Tesseract Optical Character Recognition (OCR) engine. The
screenshots to be analyzed and the terms to be searched for in
them serve as input. PDF Tester extracts the entire text from
the image files and compares it with provided search terms.
This approach is slower than the pixel-based one, but it can
be used to circumvent its limitations.

VII. EVALUATION

In this section, we describe the results of our analysis. We
created 45 certified documents during our research and tested
26 applications. The results are shown in Table IV.

A. Test Environment

To create and evaluate the certified documents, we used a
three-stage test environment, divided into systems for certifi-
cation, manipulation, and validation. The certifier’s system is
based on Windows 10 and uses Adobe Acrobat to create and
certify the PDF documents. Based on their respective market
shares [41, 42], this selection makes the best combination
regarding a real-world scenario. The attacker’s system uses
the same software combination as the certifier’s system. The
victim’s system splits up into systems with Windows 10,
macOS Catalina, and Ubuntu 18.04.4 as a Linux derivative.
The private keys used for certification are only available on
the certification system.

B. Tested Applications

To analyze the handling of different PDF applications
on regularly certified documents, we developed four sample
documents. We found out that not all tested applications
could handle certified documents correctly. The Master PDF
Editor application did not show a single certified document
as valid under macOS. PDF Studio 2019 in the Standard and
Pro variants (i.e., Windows, macOS, and Linux) changed the
certification status to unknown if any subsequent changes were
added. Since this was also the case for permitted changes, such
as the addition of annotations in P3 or further signatures in
P2, we were unable to make a statement about the certification
status. Since an evaluation for Master PDF Editor (macOS)
and PDF Studio 2019 was not possible due to the fuzzy
implementation concerning certified documents, this applica-
tion was excluded from further consideration. We additionally
observed limited support for certified documents in PDF Editor
6 Pro and PDFelement Pro under macOS; a valid verification
of the certification was only possible for documents without
additional signatures.

C. Results

We evaluated all 26 PDF applications on each of the
three UI Layers against EAA and SSA attacks. We used two
different types of exploits for this purpose: 1) exploits that
are compliant to the PDF specification and 2) exploits that

9

PDF Specification Flaws Applications’ Implementation Flaws
All exploits are compliant Attacks improving the stealthiness
to the PDF specification of EAA and SSA

UI-Layer 1 UI-Layer 2 UI-Layer 3 UI-Layer 1 UI-Layer 2 UI-Layer 3
Application Version OS EAA SSA EAA SSA EAA EAA SSA EAA SSA EAA

Adobe Acrobat Reader DC 2020.009.20074

W
in

do
w

s

 # # #
Adobe Acrobat Pro 2017 2017.011.30171 # # #
Expert PDF 14 14.0.28.3456 G# G# # # G# G#
Foxit PhantomPDF 9.7.1.29511 # # # # # #
Foxit Reader 9.7.1.29511 # # # # # #
LibreOffice Draw 6.4.2.2 G# G# G# G# G#1 G# G# G# G# G#1

Master PDF Editor 5.4.38 # # #
Nitro Pro 13.13.2.242 # G# # # # G# #
Nitro Reader 5.5.9.2 # # # # #
PDF Architect 7.1.14.4969 G# G# # # G# G#
PDF Editor 6 Pro 6.5.0.3929 #2 #2 # #2 #2 #2 G# #2

PDFelement Pro 7.5.1.4782 #2 #2 # #2 #2 #2 G# #2

PDF-XChange Editor 8.0 (Build 336.0) G# # # G# G#
Perfect PDF 8 Reader 8.0.3.5 # # # # #
Perfect PDF 10 Premium 10.0.0.1 # # # # #
Power PDF Standard 3.10.6687 G# # G# # # G# G#
Soda PDF Desktop 11.2.46.6035 G# G# # # G# G#

Adobe Acrobat Reader DC 2020.009.20074

m
ac

O
S

 # # #
Adobe Acrobat Pro 2017 2017.011.30171 # # #
Foxit PhantomPDF 3.4.0.1012 # # # # #
Foxit Reader 3.4.0.1012 # # # # #
PDF Editor 6 Pro 6.5.0.3929 #2 # #2 # #2 #2 # #2 # #2

PDFelement Pro 7.5.9.2925.5460 #2 # #2 # #2 #2 # #2 # #2

LibreOffice Draw 6.4.2.2 G# G# G# G# G#1 G# G# G# G# G#1

LibreOffice Draw 6.4.2.2

L
in

ux G# G# G# G# G#1 G# G# G# G# G#1

Master PDF Editor 5.4.38 # # #∑
Applications that are vulnerable , max 26 15 8 11 0 0 18 15 11 9 15∑
Applications that are limited vulnerability G#, max 26 7 3 9 3 3 4 3 9 9 3

 Vulnerable: Attack is undetectable on the UI Layer. 1LibreOffice does not provide a UI-Layer 3 and attacks can, henceforce, not be detected.
G# Limited Vulnerability: Attack is undetectable on the UI
Layer but a general notification is shown.

2Every kind of annotation, whether it is allowed or not, leads to an invalid certification.

Secure: Attack is clearly detectable on the UI Layer.

Table IV
WE EVALUATED 26 DIFFERENT PDF APPLICATIONS AGAINST EAA AND SSA. THE APPLICATION IS VULNERABLE IF THE ATTACK IS UNDETECTABLE,

THAT IS, IF NO ERROR OR SIGNATURE WARNING IS SHOWN. IF THE APPLICATION SHOWS A GENERIC INFORMATION MESSAGE, WE CALL IT A LIMITED
VULNERABILITY G#. WE EVALUATED THE ATTACK SUCCESS ON EACH DIFFERENT UI LAYER. ATTACK DETECTION ON DEEPER UI LAYERS MEANS THAT

THE ATTACK IS HARDER TO DETECT, BECAUSE THE VICTIM HAS TO INSPECT MULTIPLE APPLICATION PANELS.

improved the stealthiness of the attacks by abusing implemen-
tation flaws, for example, by parsing errors. The results are
depicted in Table IV.

1) Abusing PDF Specification Flaws: The middle part of
Table IV shows the results for all 26 PDF applications when
using exploits that abuse PDF specification flaws.

UI-Layer 1. The most critical UI Layer from the attacker’s
perspective is UI-Layer 1, because it is the only layer that
automatically displays the signature status by opening the
PDF. On this layer, 15 applications are vulnerable to EAA
and 7 have limited vulnerabilities G#. The SSA attack is
less successful: 8 applications are vulnerable and 3 have
limited vulnerabilities G#. PDF Editor 6 Pro and PDFelement
Pro revealed a notable behavior: whenever an annotation is
added to a certified document, the signature validation status
is invalid. Although this behavior is not compliant with the
PDF specification, it prevents all our attacks.

UI-Layer 2. One could guess that the more profound the UI
Layer is, the more attacks could be detected. Our evaluation
confirms this assumption since most applications detected the
SSA attack on UI-Layer 2, only LibreOffice have limited
vulnerabilities G#. This results from a bug in LibreOffice that
causes no signatures to be displayed in UI-Layer 2.

UI-Layer 3. UI-Layer 3 is only relevant for EAA. The SSA
attack could not be detected on UI-Layer 3, because SSA adds
a signature which does not appear in the UI element showing
PDF annotations. For UI-Layer 3, the EAA attack could be
detected in all cases. The only exception is LibreOffice Draw,
because it does not provide a dedicated panel that lists all PDF
annotations.

2) Abusing Applications’ Implementation Flaws: The right
part of Table IV depicts the results for all 26 PDF application
when using exploits that improve the attacks’ stealthiness by
abusing implementation flaws. In the following section, we

10

compare UI-Layer 1 for specification (i.e., the middle part)
with implementation flaws (i.e., the right part).

UI-Layer 1. We could find 3 further vulnerable applications
for EAA: Expert PDF 14, PDF Architect, and SodaPDF. For
SSA, we could find vulnerabilities in 7 further applications:
Adobe Acrobat Reader DC and Pro 2017 (Windows and
macOS), Perfect PDF 8 Reader and 10 Premium, and Power
PDF Standard.

UI-Layer 2. The attack that leverages implementation flaws
the most is SSA. While the specification compliant attacks had
only a few successes, the improved attacks lead to 9 vulnera-
ble and 9 limited vulnerable G# applications. For EAA, two
further applications are vulnerable : Foxit PhantomPDF and
Foxit Reader.

UI-Layer 3. Similarly to SSA on UI-Layer 2, the EAA attack
could be drastically improved on UI-Layer 3 when using
additional implementation flaws. In total, 15 applications were
vulnerable and 3 had limited vulnerabilities G#.

Permission Implementation Analysis. For our evaluation
in Table IV, we used P2 certified documents for SSA and
P3 certified documents for EAA. This restriction raises the
question of how permissions are validated in general. Firstly,
the SSA attacks that work for an application on P2 work in
the same way for P3. Secondly, when considering attacks for
lower permission levels, that is, EAA for P2 or P1, respective
SSA for P1, it depends on the application’s implementation of
those permissions. According to the PDF specification, these
kinds of attacks should be impossible in those cases. However,
we conducted an analysis of the permission behavior of these
applications. We revealed that 11 of 26 applications revealed
incorrectly implemented permissions, see Appendix A. In
order to analyze how the applications reacted to manipulations
prohibited by the permission levels P1 or P2, annotations,
like stamps (image files) and free text comments, were placed
within a P2 certified document. In addition to annotations,
existing forms were filled out in a P1 certified document.
For PDF Architect and Soda PDF we have seen the partial
implementation of the permissions. For example, level P1 is
implemented and any subsequent change is penalized with an
invalid certification, while no distinction is made between P2
and P3, and annotations are classified as permitted from P2
onwards. From an attacker’s perspective, this means that for
these 11 applications, the attack classes EAA and SSA can be
executed at lower permission levels.

Additional Findings. For Foxit Reader and Foxit Phan-
tomPDF (Windows and macOS), the implementation of the
individual permissions conformed to the specification. How-
ever, we discovered a serious bug that completely overrides
signature and certification validation for signed and certified
documents in P2 and P3. If the order of the incremental
update of body, xref, trailer to xref, trailer, body is swapped
and the xref table is adjusted according to the new byte
values, the PDF document can be completely changed without
invalidating the certification or signature.

VIII. COUNTERMEASURES

We elaborated short-term and long-term countermeasures,
which we explain further in this section.

A. Long-Term Countermeasures: Fixing the PDF Specification

Preventing Evil Annotations. With the availability of many
permitted annotations at permission level P3, there is a large
arsenal to manipulate the appearance of the content of a certi-
fied document. A particular risk is posed by the FreeText,
Stamp and Redact annotations, as they allow new content
such as text or images to be inserted into a certified document.
Even without using the EAA techniques for hiding inserted
annotations, they pose a great risk of tricking normal users.
Therefore, these three annotation types should be classified as
prohibited within the PDF specification for use within certified
documents. The remaining annotations can be used to hide
existing text or images and should be limited in their attributes.
For example, a line of type Underline or StrikeOut
should never be larger than the underlying text part. This could
be achieved by calculating the amount of collision between
two rectangles using the /BBox coordinates, when taking into
account the line thickness. In case of overlap, the integrated
editing tool should reject the drawing with a corresponding
message. To capture manually created incremental updates,
collision calculations should also be performed during cer-
tification validation. An empty or undefined value for the
/Subtype element must also be penalized with an invalid
certification status.
Preventing Sneaky Signatures. In practice, annotations
within a certified document can often be omitted. Therefore,
a lower permission level can be chosen as a precaution.
Unfortunately, this does not apply to signatures to the same
extent. In many situations, it may be useful and necessary
to allow the addition of signatures after certification. For
example, the certified document can be signed by multiple
contract partners. However, to prevent attacks of the SSA
class, signature fields must be set up at defined locations in the
PDF document before the document is certified. A subsequent
addition of signature fields must be penalized with an invalid
certification status. Otherwise, it can always be used to add
text or images included in the signature at any position. Within
our analysis, the contained fieldtype /FT with the value /Sig
was decisive for whether an object was identified as a signature
and thus classified as a permitted change. Nevertheless, it was
possible to redirect or omit the reference to the signature data
/V, and resulted in the signature not being validated and thus
not being listed in UI-Layer 2. Therefore the specification
should show the parameter /V as mandatory and not optional.
Suppose the signature cannot be validated due to missing or
incomplete signature data. In that case, it should be listed as
an invalid signature in UI-Layer 1 and UI-Layer 2.

B. Short-term Countermeasures

PDF-Detector. We analyzed the possibilities to provide a
short-term countermeasure which is standard compliant. The

11

main cause for the vulnerabilities described in this paper is
the overlay over the original content by using annotations
or signatures. We determined that we can detect such an
overlay by analyzing the position of annotations and signatures
within the document and estimating if these intersect with
some content. If such an intersection is found, a warning
can be thrown. We implemented a tool called PDF-Detector
which is capable of detecting EAAs and SSAs. PDF-Detector
is available as an online service at http://pdf-demos.de and
as an open-source library. The PDF-Detector is a python
based tool which takes certified documents as an input and
produces a report whether dangerous elements were found
in the PDF document, see Listing 2. As a first step, PDF-
Detector analyzes if the submitted PDF is digitally signed
and if the signature is a certification or approval signature.
The PDF-Detector evaluates the document’s permission level
and estimates if any Incremental Updates are applied. If true,
PDF-Detector determines if the appended elements within
the Incremental Update are allowed according to the per-
mission level. If they are denied, an error is thrown, and
the report’s status is set to error. Otherwise, PDF-Detector
determines the type of the appended elements, for example,
a FreeText annotation or a signature. Independent of the
element’s type, the changes-danger-level is defined.
The values corresponds to the values depicted in Table II
and Table III. Finally, PDF-Detector analyzes each annotation
or signature position and estimates the intersection with the
content of the page. If such an intersection is found, the
changes-danger-level is raised to very high. PDF-
Detector does not provide any cryptographic signature valida-
tion. The reason for this decision was that the management
of trusted or revoked certificates and the support of standards
like PAdES [43] and CAdES [44] are considered out of scope
and irrelevant for the attacks described in this paper.

Visible Panel for Annotation and Signatures. To reduce the
attacks’ stealthiness, we also recommend making annotations
and additional signatures visible on UI-Layer 1. Currently,
none of the tested PDF applications do this. Thus, the attacks
can only be detected if the user pro-actively looks into the
PDF application’s corresponding panels.

IX. HIGH PRIVILEGED JAVASCRIPT CODE EXECUTION

A dedicated feature of certified documents is executing high
privileged JavaScript code within Adobe Acrobat Pro and
Reader (Windows and macOS). This section describes how
the attack classes EAA and SSA can be used to inject and
execute JavaScript code into certified documents.

Overview. JavaScript code can be embedded in PDF doc-
uments to provide various interactive features. The code
execution is started by several triggers, such as opening
a page within the PDF document. In the past, researchers
used the JavaScript functionality to execute malicious code
[45, 46, 47, 48]. Adobe requires that potentially dangerous
functions can only be executed as high privileged JavaScript
code to address these issues. An example of such a function

is calling a website without asking or warning the user.
Suppose a certified document contains JavaScript code and
the certificate used is fully trusted. In that case, the execution
of high privileged JavaScript code occurs without asking the
user [49, 50].
Using EAA and SSA to inject JavaScript. For annotations
and signature fields, it is possible to pass a reference to
an object containing JavaScript. For this purpose, a trigger
is chosen within an additional-actions dictionary /AA. To
execute the JavaScript code directly upon opening the doc-
ument, the value /PO is suitable and which triggers the
code execution when opening the page. Suppose the EAA
or SSA is placed on the first page of the PDF document.
In that case, the code execution starts immediately after the
document is opened. The object referenced by /PO contains
the JavaScript code. The following example opens the website
https://www.malicious.org/ using the system’s default browser.
The victim is unable to prevent this call. The attack is not
limited to calling up a website but can execute any high
privileged JavaScript code. The only requirement is that the
victim fully trusts the certificate used to certify the PDF
document. We were able to identify a total of 117 JavaScript
methods that are protected by special security restrictions and,
for this reason, can be executed only in a privileged context
[49].

X. FUTURE RESEARCH DIRECTIONS

Page Templates. In addition to the permitted modifications
described in this paper, certified documents of permission
levels P2 and P3 offer the possibility to instantiate page tem-
plates. However, the page templates must already be included
in the document before certification. This restriction results in
a completely different attacker model which was introduced
in 2021 by Mainka et al. [51]. In this case the attacker must
manipulate the document before it is certified. For this paper,
an analysis of page templates is, thus, out of scope, but offers
an interesting research aspect for future work.
Design of the update mechanism. Incremental Updates intro-
duce a desired feature to flexibly extend PDF documents. From
a security perspective, however, Incremental Updates enable
a great attack surface allowing the stealthy manipulation of
digitally signed documents. The current countermeasures are
only a patchwork and do not introduce a systematic approach
to address the existing security issues. Future research should
concentrate on new design concepts which allow the extend-
ability of PDF documents without weakening the integrity
protection.
Editing Restrictions. Microsoft Office provides restrictions
such as: only allowing to fill-in forms, add comments, track
changes, or open a document as read-only [52]. This restriction
is similar to the P2 restrictions in PDFs. Microsoft Office also
allows applying multiple signatures with different permission
levels. The question if similar attacks like EAA and SSA
can be applied is obvious. Future research projects should
analyze the Open Document Format (ODF), Office Open XML

12

http://pdf-demos.de
https://www.malicious.org/

(OOXML) format, and all previously used but still supported
versions like ECMA-376 Office Open XML.

Privilege Escalation. Similar to PDFs, other documents like
*.docx or *.odf can contain macros. Due to previously
discovered security issues leading to remote code execution,
the processing of macros is restricted. It leads to warnings by
opening the document. Such a warning can be skipped if the
document is digitally signed and the validation is successful.
If attacks can bypass the signature validation, they can inject
arbitrary macro code, which is stealthily processed after the
victim opens the document. We adapted the attack described in
section IX on LibreOffice as a proof-of-concept and reported
it. The responsible disclosure process is not yet finalized.

Usability of Validation Warnings. During our evaluation,
we estimated a large number of confusing warnings during
the validation process. Such warnings include a wide range
of different messages and symbols independent of the used
application. Even for experts who know how PDFs work
and what behavior is expected from the application, it was
challenging to recognize the validation result and classify the
attack’s success. We strongly recommend a usability study
that addresses the following questions: 1) How users handle
signed and certified documents and raised warnings? 2) How
the usability problems with respect to warnings can be sys-
tematically analyzed? 3) What are best current practices that
can be used by developers to improve the validation results
presentation? Such a study could be broaden by extending the
scope to different formats like MS Office, Open Document
Format, AutoCAD, and DWFx Drawings.

XI. RELATED WORK

PDF Signatures. In 2008 and 2012, I. Grigg [54] and
[53] described attacks on electronic signatures. Their attacks
highlighted the abuse of missing cryptographic protection.
In 2010, Raynal et al. [55] concentrated on the security
of the applied certificate chain and criticized the design of
the trust establishment. In 2015, Lax et al. [56] considered
signed documents containing dynamic content like macros or
JavaScript. The authors highlighted the possibility of changing
the dynamic content without invalidating the signature. 2017
presented the first attacks bypassing the cryptographic pro-
tection in PDFs [57]. They successfully created two different
PDF files resulting in the same SHA-1 digest value. The
scope of their research was the collision resistance of SHA-
1 and the PDF files were used as a proof-of-concept. In
2018, Domingues and Frade [58] studied the occurrence of
digitally signed and permission-protected PDFs. The authors
found multiple problems related to digitally signed PDFs
like expired or revoked certificates. No attacks bypassing the
integrity protection of PDFs or the evaluation of previously
discovered attack vectors was made. In 2019, Mladenov et al.
[26] published a comprehensive study regarding the security
of PDF signatures and they discovered three novel attacks and
revealed all current applications vulnerable. In 2021, Mainka
et al. [51] revealed Shadow Attacks on signed PDFs. Their

attack embedded hidden content into a PDF. Once a victim
signs that PDF, they could uncover the hidden content while
keeping the signature valid. In both works [26, 51], the authors
concentrated only on approval signatures and left certified
documents out of scope.

Polyglot Attacks. In 2005, Buccafurri [59] described a novel
file format attack where the attacker forces two different views
of the same signed document by switching the file format
between BMP and HTML [59]. PDF files are mentioned as a
possible target for such an attacker, but no concrete ideas are
described. Other research combines file formats of PDF and
image format [60, 61, 62]. Depending on the viewer in use,
different content is shown. He combined a PDF and a JPEG
into a single polyglot file.

Security Apart from PDF Signatures. In 2005, McIntosh and
Austel [63] described issues in partially signed documents with
the XML rewriting attack. Somorovsky et al. [64] adapted the
attack in 2012 to SAML-based single sign-on.

XII. CONCLUSION

Certified documents enable complex and highly desired use-
cases. In contrast to approval signatures on PDFs, certified
documents allow certain changes to the PDF after its certi-
fication, such as filling out forms or adding annotations and
further signatures. However, the devil is in the specification
details. This 994-page specification grants great flexibility
in using these changes. In this paper, we shed light on
the abuse of annotation, forms, and signatures. We misused
their specified features to change the visible content of a
certified document and, thereby, introduced two specification
flaws: the Evil Annotation Attack (EAA) and the Sneaky
Signature Attack (SSA). Although neither EAA nor SSA can
change the content itself – it always remains in the PDF –
annotations and signature fields can be used as an overlay
to add new content. Victims opening the PDF are unable to
distinguish these additions from regular content. And even
worse: annotations can embed high privileged JavaScript code
that is allowed to be added to certain certified documents.
We proposed countermeasures to prevent the vulnerabilities.
However, the underlying problem remains: the flexibility to
protect the integrity of parts of documents, while allowing to
change other parts, is manifold. The research community has
struggled with similar problems on other data formats, such as
XML or Email, without finding a satisfying solution so far. In
the case of PDF, the specification must be updated to address
these issues.

ACKNOWLEDGMENT

Simon Rohlmann was supported by the German Federal
Ministry of Economics and Technology (BMWi) project “In-
dustrie 4.0 Recht-Testbed” (13I40V002C). Funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA - 390781972. We acknowledge the University of
Konstanz for supporting Vladislav Mladenov.

13

REFERENCES

[1] Adobe Inc. (2020, Jun.) Adobe Fast Facts.
[Online]. Available: https://www.adobe.com/content/
dam/cc/en/fast-facts/pdfs/fast-facts.pdf

[2] European Parliament and Council of the European
Union. (2014, Jul.) Regulation (EU) No 910/2014
of the European Parliament and of the Council
of 23 July 2014 on electronic identification and
trust services for electronic transactions in the
internal market and repealing Directive 1999/93/EC.
[Online]. Available: https://eur-lex.europa.eu/legal-
content/DE/TXT/?uri=CELEX:32014R0910

[3] United States Government Printing Office, “Electronic
signatures in global and national commerce act,” 2000.
[Online]. Available: https://www.govinfo.gov/content/
pkg/PLAW-106publ229/pdf/PLAW-106publ229.pdf

[4] Uniform Law Commission. Electronic
Transactions Act. [Online]. Available:
https://www.uniformlaws.org/committees/community-
home/librarydocuments?communitykey=2c04b76c-
2b7d-4399-977e-d5876ba7e034&tab=librarydocuments

[5] Adobe Inc. What is a Certified Document
and when should you use it? [Online]. Avail-
able: https://blogs.adobe.com/security/2012/03/what-is-
a-certified-document-and-when-should-you-use-it.html

[6] Lakehead University. Electronic Approval
Standards. [Online]. Available: https:
//www.lakeheadu.ca/sites/default/files/profile-data/
dcataldo/ElectronicApprovalStandards.pdf

[7] Bank of Italy (Banca d’Italia). USER’S
MANUAL SOFTWARE TO SIGN AND
ENCRYPT DOCUMENTS. [Online]. Avail-
able: https://www.bancaditalia.it/footer/firmadigitale/
Software manual.pdf?language id=1

[8] Certipost. Definitions and Acronyms. [Online].
Available: http://www.certipost.org/wp-content/uploads/
2015/06/DaA CTP TSP V1 0.pdf

[9] United States Government Publishing Office
(GPO). Authentication. [Online]. Available: https:
//www.govinfo.gov/about/authentication

[10] ——. Congressional Bills. [Online]. Available: https:
//www.govinfo.gov/app/collection/bills/

[11] ——. Collection of Certified Documents by the United
States Government Publishing Office (GPO). [Online].
Available: https://www.govinfo.gov/app/

[12] Legislative Assembly of British Columbia. Digitally
Signed PDFs. [Online]. Available: https://www.leg.bc.ca/
content-hansard/Pages/Digital-Signatures.aspx

[13] European Telecommunications Standards Institute
(ETSI), “Electronic signatures and infrastructures
(esi); pdf advanced electronic signature profiles;
part 4,” Tech. Rep., 2009. [Online]. Available:
https://www.etsi.org/deliver/etsi ts/102700 102799/
10277804/01.01.01 60/ts 10277804v010101p.pdf

[14] I. DocuSign. (2018, oct) Docusign validation service.

[Online]. Available: https://validator.docusign.com/
[15] Adobe Inc. Adobe Acrobat Online Service.

[Online]. Available: https://www.adobe.com/acrobat/
online.html?promoid=85665T9B&mv=other

[16] E. Commission. (2018, oct) Dss demonstration
webapp v5.3.1. [Online]. Available: https://ec.europa.eu/
cefdigital/wiki/display/CEFDIGITAL/DSS

[17] R. U. T. REGULIERUNGS-GMBH. (2018, oct)
Rtr - signatur-prüfung. [Online]. Available: https:
//www.signatur.rtr.at/de/vd/Pruefung.html

[18] A. Group. (2018, Oct.) Ellis digital signature. [Online].
Available: https://ellis.arhs-spikeseed.com/

[19] E. doo. (2018, Oct.) Vep e-obrazci. [Online]. Available:
https://www.vep.si/validator/forms/document-verify

[20] A. for Digital Italy. (2018, oct) Dss demonstration
webapp v5.2. [Online]. Available: https://dss.agid.gov.it/
validation

[21] eesti. (2018, oct) Siva demo application. [Online].
Available: https://siva-arendus.eesti.ee/

[22] Evrotrust. (2018, Oct.) Validate a signature.
[Online]. Available: https://www.evrotrust.com/landing/
en/a/validation

[23] iText PDF. iText Online PDF Service. [Online].
Available: https://itextpdf.com/en/

[24] intarsys. intarsys Online PDF Service. [Online].
Available: https://www.intarsys.de/

[25] ISO, ISO 32000-2:2017 - Document management –
Portable Document Format – Part 2: PDF 2.0, 1st ed.,
Sep. 2017.

[26] V. Mladenov, C. Mainka, K. Meyer zu Selhausen,
M. Grothe, and J. Schwenk, “1 trillion dollar refund –
how to spoof pdf signatures,” in ACM Conference on
Computer and Communications Security, Nov. 2019.

[27] Y. Chen, L. Xing, Y. Qin, X. Liao, X. Wang, K. Chen,
and W. Zou, “Devils in the guidance: Predicting
logic vulnerabilities in payment syndication services
through automated documentation analysis,” in 28th
USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA: USENIX Association, Aug. 2019, pp.
747–764. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity19/presentation/chen-yi

[28] T. Lv, R. Li, Y. Yang, K. Chen, X. Liao, X. Wang,
P. Hu, and L. Xing, “Rtfm! automatic assumption
discovery and verification derivation from library
document for api misuse detection,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’20. New
York, NY, USA: Association for Computing Machinery,
2020, p. 1837–1852. [Online]. Available: https://doi.org/
10.1145/3372297.3423360

[29] M. Acharya and T. Xie, “Mining api error-handling spec-
ifications from source code,” in International Conference
on Fundamental Approaches to Software Engineering.
Springer, 2009, pp. 370–384.

[30] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Ra-
jan, “Mining preconditions of apis in large-scale code

14

https://www.adobe.com/content/dam/cc/en/fast-facts/pdfs/fast-facts.pdf
https://www.adobe.com/content/dam/cc/en/fast-facts/pdfs/fast-facts.pdf
https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32014R0910
https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32014R0910
https://www.govinfo.gov/content/pkg/PLAW-106publ229/pdf/PLAW-106publ229.pdf
https://www.govinfo.gov/content/pkg/PLAW-106publ229/pdf/PLAW-106publ229.pdf
https://www.uniformlaws.org/committees/community-home/librarydocuments?communitykey=2c04b76c-2b7d-4399-977e-d5876ba7e034&tab=librarydocuments
https://www.uniformlaws.org/committees/community-home/librarydocuments?communitykey=2c04b76c-2b7d-4399-977e-d5876ba7e034&tab=librarydocuments
https://www.uniformlaws.org/committees/community-home/librarydocuments?communitykey=2c04b76c-2b7d-4399-977e-d5876ba7e034&tab=librarydocuments
https://blogs.adobe.com/security/2012/03/what-is-a-certified-document-and-when-should-you-use-it.html
https://blogs.adobe.com/security/2012/03/what-is-a-certified-document-and-when-should-you-use-it.html
https://www.lakeheadu.ca/sites/default/files/profile-data/dcataldo/Electronic Approval Standards.pdf
https://www.lakeheadu.ca/sites/default/files/profile-data/dcataldo/Electronic Approval Standards.pdf
https://www.lakeheadu.ca/sites/default/files/profile-data/dcataldo/Electronic Approval Standards.pdf
https://www.bancaditalia.it/footer/firmadigitale/Software_manual.pdf?language_id=1
https://www.bancaditalia.it/footer/firmadigitale/Software_manual.pdf?language_id=1
http://www.certipost.org/wp-content/uploads/2015/06/DaA_CTP_TSP_V1_0.pdf
http://www.certipost.org/wp-content/uploads/2015/06/DaA_CTP_TSP_V1_0.pdf
https://www.govinfo.gov/about/authentication
https://www.govinfo.gov/about/authentication
https://www.govinfo.gov/app/collection/bills/
https://www.govinfo.gov/app/collection/bills/
https://www.govinfo.gov/app/
https://www.leg.bc.ca/content-hansard/Pages/Digital-Signatures.aspx
https://www.leg.bc.ca/content-hansard/Pages/Digital-Signatures.aspx
https://www.etsi.org/deliver/etsi_ts/102700_102799/10277804/01.01.01_60/ts_10277804v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102700_102799/10277804/01.01.01_60/ts_10277804v010101p.pdf
https://validator.docusign.com/
https://www.adobe.com/acrobat/online.html?promoid=85665T9B&mv=other
https://www.adobe.com/acrobat/online.html?promoid=85665T9B&mv=other
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/DSS
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/DSS
https://www.signatur.rtr.at/de/vd/Pruefung.html
https://www.signatur.rtr.at/de/vd/Pruefung.html
https://ellis.arhs-spikeseed.com/
https://www.vep.si/validator/forms/document-verify
https://dss.agid.gov.it/validation
https://dss.agid.gov.it/validation
https://siva-arendus.eesti.ee/
https://www.evrotrust.com/landing/en/a/validation
https://www.evrotrust.com/landing/en/a/validation
https://itextpdf.com/en/
https://www.intarsys.de/
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yi
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yi
https://doi.org/10.1145/3372297.3423360
https://doi.org/10.1145/3372297.3423360

corpus,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, 2014, pp. 166–177.

[31] B. Homès, Fundamentals of Software Testing,
ser. ISTE. Wiley, 2013. [Online]. Available:
https://books.google.de/books?id=z1XDNlSceFkC

[32] K. G. Paterson, T. Ristenpart, and T. Shrimpton,
“Tag size does matter: Attacks and proofs for the tls
record protocol,” in Proceedings of the 17th International
Conference on The Theory and Application of Cryptology
and Information Security, ser. ASIACRYPT’11. Berlin,
Heidelberg: Springer-Verlag, 2011, p. 372–389. [Online].
Available: https://doi.org/10.1007/978-3-642-25385-0
20

[33] H. Böck, J. Somorovsky, and C. Young, “Return
of bleichenbacher’s oracle threat (ROBOT),” in 27th
USENIX Security Symposium (USENIX Security 18).
Baltimore, MD: USENIX Association, Aug. 2018, pp.
817–849. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity18/presentation/bock

[34] K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti,
and P. Y. Strub, “Triple handshakes and cookie cutters:
Breaking and fixing authentication over tls,” in 2014
IEEE Symposium on Security and Privacy, 2014, pp. 98–
113.

[35] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius,
and E. Z. Yang, “Mxss attacks: Attacking well-secured
web-applications by using innerhtml mutations,” in
Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ser. CCS
’13. New York, NY, USA: Association for Computing
Machinery, 2013, p. 777–788. [Online]. Available:
https://doi.org/10.1145/2508859.2516723

[36] S. Lekies, K. Kotowicz, S. Groß, E. A. Vela Nava, and
M. Johns, “Code-reuse attacks for the web: Breaking
cross-site scripting mitigations via script gadgets,” in
Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS
’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 1709–1723. [Online]. Available:
https://doi.org/10.1145/3133956.3134091

[37] Y. Zhang, X. Zheng, Z. Wang, G. Ai, and Q. Huang,
“Implementation of a parallel gpu-based space-time
kriging framework,” ISPRS Int. J. Geo Inf., vol. 7,
no. 5, p. 193, 2018. [Online]. Available: https:
//doi.org/10.3390/ijgi7050193

[38] J. Müller, F. Ising, V. Mladenov, C. Mainka, S. Schinzel,
and J. Schwenk, “Practical decryption exfiltration: Break-
ing pdf encryption,” in ACM Conference on Computer
and Communications Security, Nov. 2019.

[39] M. Grothe, C. Mainka, P. Rösler, and J. Schwenk, “How
to break microsoft rights management services,” in 10th
USENIX Workshop on Offensive Technologies (WOOT
16). Austin, TX: USENIX Association, Aug. 2016.
[Online]. Available: https://www.usenix.org/conference/
woot16/workshop-program/presentation/grothe

[40] J. Müller, F. Ising, C. Mainka, V. Mladenov, S. Schinzel,
and J. Schwenk, “Office document security and privacy,”
in 14th USENIX Workshop on Offensive Technologies
(WOOT 20). USENIX Association, Aug. 2020.
[Online]. Available: https://www.usenix.org/conference/
woot20/presentation/muller

[41] Statista, Inc. (2019, Sep.) Operating Systems - Statistics
& Facts. [Online]. Available: https://www.statista.com/
topics/1003/operating-systems/

[42] Datanyze. Adobe Acrobat DC Market Share
and Competitor Report. [Online]. Avail-
able: https://www.datanyze.com/market-share/other-
sales-software--408/adobe-acrobat-dc-market-share

[43] European Telecommunications Standards Institute
(ETSI), “Electronic signatures and infrastructures
(esi); pdf advanced electronic signature profiles;
part 1,” Tech. Rep., 2009. [Online]. Available:
https://www.etsi.org/deliver/etsi ts/102700 102799/
10277801/01.01.01 60/ts 10277801v010101p.pdf

[44] ——, “Electronic signatures and infrastructures (esi);
cades baseline profile,” Tech. Rep., 2012. [Online].
Available: https://www.etsi.org/deliver/etsi ts/103100
103199/103173/02.01.01 60/ts 103173v020101p.pdf

[45] J. M. Esparza. (2014, Oct.) Pdf attack - a journey from
the exploit kit to the shellcode. [Online]. Available:
https://www.blackhat.com/docs/eu-14/materials/eu-14-
Esparza-PDF-Attack-A-Journey-From-The-/Exploit-
Kit-To-The-Shellcode.pdf

[46] V. Hamon, “Portable Document Format (PDF) Security
Analysis and Malware Threats,” Black Hat Abu Dhabi,
2012.

[47] P. Stokes. (2019, Mar.) Malicious pdfs —
revealing the techniques behind the attacks. [Online].
Available: https://www.sentinelone.com/blog/malicious-
pdfs-revealing-techniques-behind-attacks/

[48] R. Brandis and L. Steller, “Threat Modelling Adobe
PDF,” Command, Control, Communications and Intel-
ligence Division, DSTO, Australien, 2012.

[49] Adobe Systems Incorporated, JavaScript for Acrobat API
Reference - Adobe Acrobat SDK 8.1, Apr. 2007.

[50] Adobe Inc. (2020, Jul.) Javascript controls -
acrobat application security guide. [Online]. Avail-
able: https://www.adobe.com/devnet-docs/acrobatetk/
tools/AppSec/javascript.html

[51] C.-t.-a. Mainka, V.-d.-l. Mlade nov, and S. Rohlmann,
“Shadow Attacks: Hiding and Replacing Content in
Signed PDFs,” in Proceedings 2019 Network and Dis-
tributed System Security Symposium. Internet Society,
Feb. 2021.

[52] Microsoft. (2020) Allow changes to parts of
a protected document. [Online]. Available:
https://support.microsoft.com/en-us/office/allow-
changes-to-parts-of-a-protected-document-187ed01c-
8795-43e1-9fd0-c9fca419dadf

[53] I. Grigg. (2008) Technologists on signatures: looking
in the wrong place. [Online]. Available: http:

15

https://books.google.de/books?id=z1XDNlSceFkC
https://doi.org/10.1007/978-3-642-25385-0_20
https://doi.org/10.1007/978-3-642-25385-0_20
https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://doi.org/10.1145/2508859.2516723
https://doi.org/10.1145/3133956.3134091
https://doi.org/10.3390/ijgi7050193
https://doi.org/10.3390/ijgi7050193
https://www.usenix.org/conference/woot16/workshop-program/presentation/grothe
https://www.usenix.org/conference/woot16/workshop-program/presentation/grothe
https://www.usenix.org/conference/woot20/presentation/muller
https://www.usenix.org/conference/woot20/presentation/muller
https://www.statista.com/topics/1003/operating-systems/
https://www.statista.com/topics/1003/operating-systems/
https://www.datanyze.com/market-share/other-sales-software--408/adobe-acrobat-dc-market-share
https://www.datanyze.com/market-share/other-sales-software--408/adobe-acrobat-dc-market-share
https://www.etsi.org/deliver/etsi_ts/102700_102799/10277801/01.01.01_60/ts_10277801v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/102700_102799/10277801/01.01.01_60/ts_10277801v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103100_103199/103173/02.01.01_60/ts_103173v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/103100_103199/103173/02.01.01_60/ts_103173v020101p.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Esparza-PDF-Attack-A-Journey-From-The-/Exploit-Kit-To-The-Shellcode.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Esparza-PDF-Attack-A-Journey-From-The-/Exploit-Kit-To-The-Shellcode.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Esparza-PDF-Attack-A-Journey-From-The-/Exploit-Kit-To-The-Shellcode.pdf
https://www.sentinelone.com/blog/malicious-pdfs-revealing-techniques-behind-attacks/
https://www.sentinelone.com/blog/malicious-pdfs-revealing-techniques-behind-attacks/
https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/javascript.html
https://www.adobe.com/devnet-docs/acrobatetk/tools/AppSec/javascript.html
https://support.microsoft.com/en-us/office/allow-changes-to-parts-of-a-protected-document-187ed01c-8795-43e1-9fd0-c9fca419dadf
https://support.microsoft.com/en-us/office/allow-changes-to-parts-of-a-protected-document-187ed01c-8795-43e1-9fd0-c9fca419dadf
https://support.microsoft.com/en-us/office/allow-changes-to-parts-of-a-protected-document-187ed01c-8795-43e1-9fd0-c9fca419dadf
http://financialcryptography.com/mt/archives/001056.html

//financialcryptography.com/mt/archives/001056.html
[54] I. Grigg. (2012) Signatures on fax & email -

if you did not intend to be bound, why did
you bother to write it? [Online]. Available: http:
//financialcryptography.com/mt/archives/001364.html

[55] F. Raynal, G. Delugré, and D. Aumaitre, “Malicious
Origami in PDF,” Journal in Computer Virology,
vol. 6, no. 4, pp. 289–315, 2010. [Online].
Available: http://esec-lab.sogeti.com/static/publications/
08-pacsec-maliciouspdf.pdf

[56] G. Lax, F. Buccafurri, and G. Caminiti, “Digital docu-
ment signing: Vulnerabilities and solutions,” Information
Security Journal: A Global Perspective, vol. 24, no. 1-3,
pp. 1–14, 2015.

[57] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and
Y. Markov, “The first collision for full sha-1,” in Annual
International Cryptology Conference. Springer, 2017,
pp. 570–596.

[58] P. Domingues and M. Frade, “Digitally signed and
permission restricted pdf files: A case study on digital
forensics,” in Proceedings of the 13th International
Conference on Availability, Reliability and Security,
ser. ARES 2018. New York, NY, USA: Association
for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3230833.3232811

[59] F. Buccafurri, “Digital signature trust vulnerability:
A new attack on digital signatures,” Information
Management & Computer Security, vol. 4, pp. 28–6,
2005. [Online]. Available: http://www.unirc.it/firma/en/
Buccafurri ISSA 1008.pdf

[60] F. Buccafurri, G. Caminiti, and G. Lax, “Fortifying
the dalı̀ attack on digital signature,” in Proceedings
of the 2nd International Conference on Security of
Information and Networks, ser. SIN ’09. New York,
NY, USA: Association for Computing Machinery, 2009,
p. 278–287. [Online]. Available: https://doi.org/10.1145/
1626195.1626262

[61] D. Popescu, “Hiding malicious content in PDF
documents,” CoRR, vol. abs/1201.0397, 2012. [Online].
Available: http://arxiv.org/abs/1201.0397

[62] A. Albertini, “This PDF is a JPEG; or,
This Proof of Concept is a Picture of Cats,”
PoC 11 GTFO 0x03, 2014. [Online]. Available:
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf

[63] M. McIntosh and P. Austel, “XML signature element
wrapping attacks and countermeasures,” in SWS ’05: Pro-
ceedings of the 2005 Workshop on Secure Web Services.
New York, NY, USA: ACM Press, 2005, pp. 20–27.

[64] J. Somorovsky, A. Mayer, J. Schwenk, M. Kampmann,
and M. Jensen, “On breaking saml: Be whoever you want
to be,” in 21st USENIX Security Symposium, Bellevue,
WA, Aug. 2012.

APPENDIX

A. List of Permission-Incompliant PDF Applications
The following applications do not correctly implement

permission-level checks. This implementation issue enables
the adaption of SSA to P1 certified documents and EAA to
P1 and P2 certified documents.

• Expert PDF 14, 14.0.28.3456, Windows
• LibreOffice Draw, 6.4.2.2, Windows
• Master PDF Editor, 5.4.38, Windows
• PDF Architect 7, 7.1.14.4969, Windows
• PDF-XChange Editor, 8.0 (Build 336.0), Windows
• Perfect PDF 8 Reader, 8.0.3.5, Windows
• Perfect PDF 10 Premium, 10.0.0.1, Windows
• Soda PDF Desktop, 11.2.46.6035, Windows
• LibreOffice Draw, 6.4.2.2, macOS
• Master PDF Editor, 5.4.38, Linux
• LibreOffice Draw, 6.4.2.2, Linux

B. Fixed Applications
The following applications have been reported to us by the

vendors as fixed.
• Adobe Acrobat DC, 2021.001.20315, Windows
• Adobe Acrobat 2020, 2020.001.30020, Windows
• Adobe Acrobat 2017, 2017.011.30190, Windows
• Foxit PhantomPDF, 10.1.1, Windows
• Foxit Reader, 10.1.1, Windows
• LibreOffice, 7.0.4, Windows
• Adobe Acrobat DC, 2021.001.20315, macOS
• Adobe Acrobat 2020, 2020.001.30020, macOS
• Adobe Acrobat 2017, 2017.011.30190, macOS
• Foxit PhantomPDF, 4.1.1, macOS
• Foxit Reader, 4.1.1, macOS
• LibreOffice, 7.0.4, macOS
• LibreOffice, 7.0.4, Linux

C. PDF-Tester Workflow
User Configuration

Screenshot Generation

PDF File

PDF Application

Save Screenshot

Screenshot Evaluation

Ground Truth

Compare

Store Result

More Programs?

More PDFs?

More Screenshots?

Start

Choose Attack Vector

Open External Program

Take Screenshot,
Close Program

Yes

No

Yes No

Select Unmanipulated
Screenshot

Select Manipulated
Screenshot

Yes

No

End

PDF Tester Concept. The left part shows PDF Tester’s
screenshot generation. In the right part, PDF Tester’s screen-
shot evaluation is depicted.

16

http://financialcryptography.com/mt/archives/001056.html
http://financialcryptography.com/mt/archives/001364.html
http://financialcryptography.com/mt/archives/001364.html
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf
http://esec-lab.sogeti.com/static/publications/08-pacsec-maliciouspdf.pdf
https://doi.org/10.1145/3230833.3232811
http://www.unirc.it/firma/en/Buccafurri_ISSA_1008.pdf
http://www.unirc.it/firma/en/Buccafurri_ISSA_1008.pdf
https://doi.org/10.1145/1626195.1626262
https://doi.org/10.1145/1626195.1626262
http://arxiv.org/abs/1201.0397
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf

D. PDF-Detector Report

1 {
2 "status": "OK/warning/error",
3 "type": "approval/certified/none",
4 "permission": "1/2/3/none",
5 "incremental-update-changes": "annotation/signature/

annotation+signature/exists/none",
6 "changes-danger-level": "very high/high/medium/low/

none",
7 "message": ""
8 }

Listing 2. PDF-Detector returns a report as a JSON message. The message
contains information if dangerous elements intersecting with original content
occur in the document.

E. Priviliged JavaScript Execution in PDF

1 <<
2 /JS (app.launchURL(
3 "https://www.malicious.org/",
4 true
5);)
6 /S /JavaScript
7 >>

Listing 3. Privileged JavaScript execution automatically invoking a URL.

17

	Introduction
	Basics
	PDF Structure
	Interactive Elements
	Incremental Update
	Integrity Protection of PDFs

	Attacker Model
	UI Layer
	Entities
	Success Conditions

	Methodology
	Manual Specification Analysis
	Manual vs. Automated Approach

	Breaking PDF Certification
	Evil Annotation Attack (Specification Flaw: Breaking P3)
	Sneaky Signature Attack (Specification Flaw: Breaking P2)
	Limitations of EAA and SSA
	It's Not a Bug, It's a Feature
	Permission Mismatch

	Methodology: Automatic Viewer Analysis with PDF Tester
	Evaluation
	Test Environment
	Tested Applications
	Results
	Abusing PDF Specification Flaws
	Abusing Applications' Implementation Flaws

	Countermeasures
	Long-Term Countermeasures: Fixing the PDF Specification
	Short-term Countermeasures

	High Privileged JavaScript Code Execution
	Future Research Directions
	Related Work
	Conclusion
	Appendix
	List of Permission-Incompliant PDF Applications
	Fixed Applications
	PDF-Tester Workflow
	PDF-Detector Report
	Priviliged JavaScript Execution in PDF

